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ABSTRACT

People construct fences to delineate land ownership and to control access to land. Fences accomplish several purposes,
notable among them are containing livestock or wildlife raised for profit or subsistence, excluding use of vegetation within
areas to be conserved, and reducing conflicts between wildlife and humans. In addition to these intended purposes, fences
may also offer unanticipated benefits, such as vegetation within hedgerow fences providing cover to wildlife, or grazing
by confined herbivores promoting native flora. However, because fences limit mobility of large herbivores, fenced areas
become fragments within the landscape, sometimes with undesirable results. We review of the positive and negative
consequences of fencing landscape patches for large herbivores, using examples from livestock production and wildlife
conservation. Fences allow grazing to be controlled, to control grazing intensity or rest parcels. Fences may entangle or
electrocute herbivores, truncate migratory routes, excise important resources needed by large herbivores, and allow resident
herbivore populations to become too high and harm vegetation. More subtly, fencing parcels may reduce the carrying
capacity of a landscape, irrespective of habitat loss. Eliminating access to heterogeneous forage patches within a landscape
reduces options available to herbivores or their herders, both at a given time and across seasons. Normalized difference
vegetation indices, derived from satellite images and reflecting green vegetation biomass, are used to suggest potential
effects of fencing upon herbivore stocking rates. Ecosystem modeling quantified the decrease in herbivore stocking rate
as a 300 km2 block of land in southern Africa was fragmented. When the block was fenced as 10 km2 parcels, 19% fewer
cattle could be supported, compared to the block being unfenced.

INTRODUCTION

Fences are constructed for a variety of reasons, but their main purpose is to control access. Fences may improve security
from thieves or delineate a boundary. In this paper, we consider effects of fences upon large herbivores, wild and domestic.
There are many benefits to fencing. For example, fencing allows range to be subdivided, which can lead to more refined
management of livestock, and increased productivity. Fencing may also exert harmful effects on ecosystems. Confined
herbivores may overpopulate a fenced area, leading to vegetation degradation and starvation. Fences may truncate
migratory movements, which may have subtle effects, such as animals finding alternative routes, or profound effects causing
thousands of deaths as animals concentrate along the break in the migration corridor. Ben-Shahur (1993) asked if fences
reduce habitat carrying capacity for herbivores irrespective of habitat loss. In short, he asked “Does elimination of access
to heterogeneous forage patches reduce the capability of habitats to support ungulate herbivores?”

Here we briefly review the scope of fencing, benefits of fencing, and some negative consequences, using mostly African
examples. We then present analyses of remotely sensed data that provide some indication that capacity declines as
landscapes are fragmented. Finally, ecological modeling is used to quantify what those declines may be for a site in southern
Africa. We conclude by recommending that fences be properly designed for their use, and that the recent removal of large-
scale fences in African systems provides researchers opportunities to explore population and range responses.

SCOPE OF FENCING

When considering fencing, many would envision a style typical of their region – 5 barbed or smooth wires on metal posts
1.3 m high bordering individually owned parcels, or sub-parcels. However, such fences are not the norm in Africa, for
example, where 5 strand designs would not impede movements of many large herbivores (Hoare 1992). Instead, fencing
materials vary from moats, to cacti, thorn, or stone, to barbed fencing with few strands, to poly wire or tape and electrified
fencing with 21 high-tensile strands spaced 80-170 mm apart (van Rooyen, du Toit, & van Rooyen 1989). Fence design
varies by what animals are to be confined, whether they are jumpers (e.g., white-tailed deer [Odocoileus virginianus], impala
[Aepyceros melampus], eland [Taurotragus oryx]), crawlers (e.g., gemsbok [Oryx gazella], pronghorn [Antilocapra
americana], tssessbe [Damaliscus lunatus]), those that break fences (e.g., elephants [Loxodonta africana], giraffes [Giraffa



camelopardalis]), animals that do not jump (springbok [Antidorcas marsupialis], blesbok [Damaliscus dorcus]), or those
that are difficult to fence (e.g., warthog [Phacochoerus aethiopicus], bushbuck [Tragelaphus scriptus], carnivores) (van
Rooyen et al. 1989). Some animals, such as carnivores, learn to avoid fences quickly, whereas some, such as giraffes, may
take months. Elephants are a special challenge, because of their sheer bulk, so that a fence may be judged “effective against
... even elephants, in the absence of sufficient inducement to break it.” (Hoare 1992).

Many North Americans would also be surprised by the scale of area enclosed by some fences that do not merely enclose
parcels, but rather contain entire regions. Botswana provides an example. There, livestock producers wished to have access
to European markets, but to do so required that their livestock products be certified free of foot-and-mouth disease. Fences
were constructed beginning about 1950 (Keene-Young 1999), to segregate livestock from wildlife, such as the 100 km Nxai
Pan Buffalo Fence built in 1968 (Anderson 1998). In 1975, the Tribal Grazing Land Policy stated as a goal of the
government the establishment of cordon fences around livestock producing sites (Perkins 1996). Construction surged again
in the mid-1990s, when outbreaks of contagious bovine pleural pneumonia were contained. Today, the Setate, Ikofa,
Caprivi, Northern Buffalo, Nxia Pan, and Phefodiafoka fences sum to thousands of kilometers of sanitary fences fragmenting
Botswana (Perkins 1996). The Nxia Pan Buffalo Fence has been decommissioned, meaning it is no longer maintained
(Anderson 1998) and 30 km of fence were removed (Keene-Young 1999), but in general, the goal of segregating livestock
from wildlife remains intact.

Measures to control dingoes (Canus lupus dingo) in Australia provide another example. In 1885, dingoes were declared
as pests upon sheep, beginning bounties, trapping, shooting, and poisoning campaigns. Controlling dingoes with these
methods was only partially successful. For example, in 1952, an estimated 500,000 sheep were killed by dingoes. In about
1954, construction of a 2 m high dingo fence began (Bauer 1964; Allen & Sparkes 2001), and at its peak, 8,614 km of dingo
fence were in place (Glen & Short 2000). Until 1981, the fence was 5,631 km, still the longest fence in the world, and twice
the length of the Great Wall of China (Glen & Short 2000). The Queensland section that remains today is 2,560 km.

Many conservation areas in Africa have been fenced, including the eastern, southern, and western borders of Kruger
National Park that were fenced for decades (flooding prevented fencing the northern border) (De Vos et al. 2001). Other
conservation areas fenced on a large scale include Addo Elephant National Park, South Africa; Sengwa Wildlife Research
Area, Zimbabwe, along the eastern, southern, and western boundaries; Etosha National Park and Skeleton Coast National
Park in Namibia; Aberdare National Park, Kenya (Woodley 1965; Rhino Ark 2002); Meru National Park, Kenya, fenced
along the northeastern border; Hwange National Park, Zimbabwe; and Gonareszhou National Park, Zimbabwae, soon to
merge with Mozambique’s Limpopo Park and South Africa’s Kruger National Park, to become the Greater Limpopo
Transfrontier Park.

BENEFITS OF FENCING

The overarching benefit to fencing is to control access, so that livestock or wildlife may be confined, or given exclusive
access to landscape patches. Fenced sub-parcels or paddocks allowmanagers to move livestock between landscape patches,
optimizing grazing and allowing resting of unused patches, which can increase productivity (Hoare 1992). There is a
voluminous literature describing the economic and ecological benefits of grazing systems made possible by using fencing
to control the timing and duration of landscape use by large herbivores (e.g., Ratliff & Reppert 1974; Eckert & Spencer
1986; Papadopoulos et al. 1995; Werner & Urness 1998; Williams & Hammond 1999; Kie & Lehmkuhl 2001; Halstead
et al. 2002).

Wildlife may be confined by fences to reduce conflicts with humans, allow exploitation, and to protect human life. For
example, fencing allows game ranching to occur, an important industry in South Africa where 3000 ranches exist (Gobler
& van der Bank 1992). Fencing highways is an important tool for reducing vehicle accidents, injuries, and deaths
(e.g., Clevenger, Chruszez & Gunson 2001). Containing elephants is critically important within their range in Africa.
Between 1982 to 1989, 500 people where killed by elephants in Zimbabwe (Riccuiti 1993), and from June 1990 to July
1991, nine Kenyans were killed by elephants (Waithaka 1993). In his surveys in Mbololo, Kenya, Waithaka (1993) found
that 97% of local people “strongly disliked” elephants, and 99% of 231 respondents claimed to have lost at least half of their
season’s crops due to elephant damage. A similar percentage of people voiced similar dislikes in the Aberdare region, until
in 1989 an electric fence was installed, eliminating encroachment by elephants and appeasing local people (Waithaka 1993).

Fencing may reduce mixing of wildlife and livestock, decreasing the risk of disease spread and predation. In Botswana,
the necessity of preventing disease spread is being debated; critics of the cordon fences say that many of the areas protected
for livestock production actually contain few livestock (Anderson 1998). There is also some question about the efficacy
of fencing to contain an airborne pathogen such as that causing foot-and-mouth disease (Owen & Owen 1980). Regardless,
the overarching goal of meeting the requirements of European markets has been met. In our other example, the Queensland
dingo barrier fence has been judged effective in reducing predation by dingoes on sheep (Allen & Sparkes 2001).



Fencing may also exclude herbivores entirely to control erosion, protect streams or water supplies, or prevent trampling.
For example, Maschinski, Frye, & Rutman (1996) document how the extinction of sentry milk vetch (Astragalus
cremnophylax var. cremnophylax) from a plot in Arizona was prevented or delayed by fencing-out herbivores. Conversely,
heavy grazing by confined herbivores may promote native flora, by suppressing competing exotic species, and can alter the
succession of forest due to selectivity in seedlings browsed (Linhart & Whelan 1980). Fencing studies that use enclosures
to quantify effects of herbivory or that make cross-fence comparisons are numerous (e.g., Hanson 1929; Bock & Bock 1993;
Hiscocks 1999). Studies that investigate vegetation responses in fenced areas where herbivores over-graze are helpful as
well (e.g., Guy 1989).

Lastly, the fences themselves may benefit wildlife. The value of hedgerow fencing (or ‘living fences’) for wildlife has been
recognized for decades (e.g., Edminster 1938), and country-wide declines in some avian populations have been documented
when hedgerows were removed (O’Connor & Shrubb 1986). The role hedgerows play in connected fragmented landscape
patches has become of interest recently (e.g., Demers et al. 1995). Lastly, hedgerow and thorn fences can promote
landscape diversity by including or sheltering small trees that will escape herbivory (Reid & Ellis 1995).

NEGATIVE CONSEQUENCES

Countless fencing projects meet the objectives for which they were built, with little risk to livestock, wildlife, or people
(although more subtle declines in capacity may be occurring, as discussed in the next section). It may be that when fencing
projects work as intended, their success is muted by calls for action elsewhere by those complaining of fencing projects that
cause harm. Regardless, most fences pose some risk, and some fences have become infamous due to the damage caused.
Accumulated effects from many small fences may lead to profound changes in animal behaviors (e.g., migrations of
pronghorns appear to have been truncated in Texas; Haley & DeArment 1969), but most are unexplored. Other fences
simply do not function well. For example, sheep in California were not protected well by an electric fence (Timm &
Connolly 2001), and fencing against predators can be expensive.

Wildlife and livestock attempt to move through fences, with varying degrees of success depending upon the design and
species in question. Some species, such as swans (e.g., Cygnus spp.), owls, and ptarmigan (Lagopus spp.) will collide with
fences (e.g., Bevanger & Brøseth 2000), but most are deliberate attempts to cross. Animals may be attracted to forage or
crops on the other side of a fence, attempt to continue a migration or dispersal blocked by a fence, be drawn by their young
that have moved under the fence and are calling, or be attempting to escape harassment due to dogs, predators, or poachers
(Hoare 1992). Wildlife and livestock can become tangled and die in fences, and may be electrocuted (Denney 1964; Hoare
1992). Fences with smooth wire can even provide poachers with material for snares.

Livestock or wildlife confined or excluded from parcels may over-graze the available vegetation. In fenced plots, elephants
will severely damage acacias (Hoare 1992). Across a fence in Amboseli National Park that excludes elephants the effects
are striking. The fenced forest is dense and green, whereas the acacias outside the fence are broken and stripped of leaves
(Ricciuti 1993). Elephants have cleared much of the available browse, so that browsers like giraffes and kudus
(Tragelaphus spp.) are rare in the park. In general, when elephants are excluded from an area, there is little grass, thick bush
develops, and tsetse flies (Glossina spp.) may increase (Ricciuti 1993). In Sabi Sand Wildtuin, bordering Kruger National
Park, after the fence was taken down the changes in vegetation were profound, mostly due to elephant damage (Hiscock
1999), but how much of the damage was simply vegetation returning to a more normal state remains a question.

Some concern has been expressed over the potential for inbreeding in fenced conservation areas in Zimbabwe (Ricciuti
1993), but this may be in-part an attempt to deflect some criticism they received over their elephant hunting program. The
difficulty in maintaining truly impermeable fences (e.g., van Rooyen et al. 1989), and small amount of mixing required to
prevent inbreeding in most species suggests this is not a pressing problem. In contrast, Grobler & van der Bank (1992) point
out that populations on many South African game farms are very small, with perhaps 10 individuals of the rarer species
within a fenced area. Founder effects and inbreeding are distinct concerns, in that case.

Fencing may prevent wildlife or livestock from accessing key resources. For example, in Kajiado District, Kenya, swamps
created by water runoff from Mount Kilimanjaro provide a critical dry season forage resource for elephants and other
wildlife, as well as Maasai livestock. Namelok Swamp, Kimana Swamp, and its associated springs have been fenced to
protect water sources and to graze livestock, and fencing and agriculture around other swamps limits access by wildlife and
livestock (Boone & Coughenour 2001). Conservationists and cultural anthropologists are concerned that access to the
swamps may become so constrained that wildlife and livestock populations will collapse.

In Botswana, fence construction began in the 1950s (Keene-Young 1999), but it was not until the droughts of the 1980s that
the international conservation community took note. In the Kalahari, wildebeest only migrate when forage (and water stored
within the forage) is too low. In dry years, wildebeest moved to the northeast, to Lake Ngami and the Okavango Delta, in



search of water. But that migration corridor was severed in 1954 by the Central Ngwato fence (Owen & Owen 1980;
Spinage 1992). The fence forced animals to continue to the east, toward Lake Xau, where they accumulated and consumed
all available forage. In that year alone, Williamson & Mbano (1988) estimated that 52,000 wildebeest died in the Lake Xau
area, and the number may be as high as 80,000 (Parry 1987). There was a significant migration to the southeast, towards
Molopo River, but that was blocked as well. In Botswana, hartebeest (Alcelaphus buselaphus) migrate and Spinage (1992)
cites 10,000 hartebeest dying against the Ghanzi fences between 1981 and 1987. In the early 1980s, some animals migrated
to the north, east, and south as normal, but could not return because of fences and disturbance from populated areas, and
so many animals died (Spinage & Matlhare 1992). If animals cannot repopulate areas following droughts, water-
independent species will be favored, such as gemsbok and springbok (Spinage & Matlhare 1992). All told, the droughts of
the 1980s were estimated to have caused 90% mortality in migratory species (although declines began much earlier [Spinage
1992]), and the populations are unlikely to recover (reviewed in Perkins 1996).

Environmental impact assessments were not required nor were they done when building the veterinary fences of Botswana,
nor were communities consulted (Anderson 1998). Local hunters would like some fences to be removed, to begin to rebuild
wildlife populations (Keene-Young 1999). Small sections have been removed, and larger fences decommissioned, but the
pace is glacial. Like many African nations, the cause for the declines of Botswana wildlife are complex, including hunting,
the expansion of livestock production, and loss of access to water. Regardless, the losses caused by veterinary fences – and
continued fence building – appear to be in conflict with the Botswana National Development Plan that states a desire to
make tourism a top contributor to the county’s gross domestic product (Perkins 1996).

FRAGMENTATION AND CARRYING CAPACITY

We turn to a more subtle response from fencing a landscape; changes in carrying capacity not related to habitat loss. Fences
can fragment landscape in two ways. Carrying capacity can be reduced if animals are excluded from areas of the landscape
because such exclusion compresses the area of usable habitat. Alternatively, even when animals are not excluded from
habitats, their movements may restricted by fences. Here, we discuss effects of fences on carrying capacity resulting from
restriction on animal movements, but apart from effects on habitat loss.

Spatially heterogeneous landscapes provide opportunities for vagile herbivores to access forage resources across a range
of scales. When these resources are patchy, the variety of resources accessible to herbivores increases as a power of the
square root of the area accessible to them (e.g., Ritchie & Olff 1999). Thus, herbivores have a range of choices of
resources in landscapes that are unfragmented relative to those where movements are restricted. This is important because
when the occupied patch is not providing adequate forage, other more productive patches are available. If fences fragment
landscape, herbivores in low quality or low biomass patches may not be able to access patches that are higher in quality or
biomass.

Reports of effects of habitat loss on carrying capacity are common in the literature, but reports of effects of fragmentation
alone are rarer (e.g., the question posed by Ben-Shahar 1993). How does fragmentation affect capacity? This question is
a foundation of ongoing research sponsored by the US National Science Foundation. A. Ash and J. Gross are leading field
trials with cattle in Australian paddocks of different areas that will provide evidence of effects of fragmentation. Ecological
modeling is ongoing as well, assessing effects from fragmentation on large herbivores. Here early progress is reported,
using patterns in satellite imagery and ecological modeling to draw inferences.

Inferences from Greenness

Data Sources
Satellite images provide measures of greenness we may use to infer forage heterogeneity. Advanced Very High Resolution
Radiometer (AVHRR) sensors aboard National Oceanic and Atmospheric Administration (NOAA) weather satellites acquire
images every day for five bands of the electromagnetic spectrum, for the entire globe, at a resolution of 1.1 km, where each
pixel in the image represents a square area on Earth 1.1 km on a side. Soils and vegetation reflect near infrared (NIRed,
0.72-1.10 :m) and red (Red, 0.58-0.68 :m) light differently, so analysts use these bands to calculate normalized difference
vegetation indices (NDVI), using: NIRed-Red / NIRed+Red. NDVI indices are correlated with vegetation biomass and
condition (an early example includes Tucker et al. 1985, with many more recent applications, e.g., Eklundh 1998; Boone
et al. 2000). Areas with high red reflectance but low NIRed such as water receive low NDVIs, and areas that reflect NIRed
well but not red, such as vegetation, receive high NDVIs. Mathematically, the index spans -1 to 1, but in practice, values
range from 0 to about 0.8. Producers scale these values so that they are 8-bit integers, spanning 0 to 255 or a similar range,
with some values (e.g., 0 to 5) used to identify water bodies and clouds. The Global Land 1-km AVHRR Program (USGS
1998) used daily satellite images to compile global 1 km resolution, 10-day NDVI composites, selecting the maximum
NDVI value during the 10-day period, yielding 36 images per year. The images were downloaded for East Africa and South
Africa, for April 1992 to May 1996, with several missing periods, including all of 1994. For each of the 36 10-day periods,



Figure 1. NDVI greenness profile for each 1 km2 of a landscape patch,
including (a) all of Ilkisongo Maasai Section, (b) Imbirikani Group Ranch, (c)
a 5 km2 parcel within the group ranch, and (d) five shared 1 km2 parcels,
representing a grazing association.

the images across years were averaged, yielding NDVI images for an average year in the mid-1990s. An annual greenness
profile may be constructed for each pixel, from the 36 images, showing how greenness changed through the year.

A second source for NDVI images is from the SPOT program Earth Observation System, which was designed and
developed by Centre National d’Etudes Spatiales of France, with cooperation from the governments of Sweden and
Belgium. SPOT satellites are best known for their high resolution (10 - 20 m pixels) images that have been acquired for
more than 15 years. However, SPOT4 and the new SPOT5 include a VEGETATION sensor, which has a coarser resolution
(1.15 km square pixels) and acquires images with the same spectral bands as the high resolution sensor. High resolution
images and essentially real-time VEGETATION images accompanied by detailed metadata are commercial products sold
by Spot Imaging, Inc. and the VEGETATION Programme. VEGETATION also freely offers full resolution (1 km pixel)
NDVI images for entire continents, about three months after the images are taken (VITO 2002), with the earliest images
from April 1998. These data are 10-day composites, where for each pixel the best NDVI value available (based on sun and
sensor angles, etc.) is selected from the 10-day period, and a composite similar to those described for AVHRR is created.
We acquired the VEGETATION NDVI images for Africa from April 1998 to April 2002 from the VITO server, and
retained from them portions for East Africa and South Africa. The images were averaged to yield 36 images of average
NDVI from 1998 to 2002, analogous to the AVHRR data.

Fragmentation through Land Tenure Change
Land tenure in Kajiado District, southwestern Kenya, has changed dramatically in the last 30 years. Historically, pastoralists
occupied eight Maasai sections, grazing their livestock within section boundaries. Sections were large, and contained
diverse topography, a variety of habitats, and several water sources. In the 1960s and 1970s, hopes of improving livestock
production and land access for Maasai
led the World Bank and Kenyan
government to subdivide Kajiado into
group ranches, now numbering 52.
Title to group ranches were held by
Maasai, with ranch members sharing
common ownership. From the
beginning of group ranch formation, and
increasingly common today, group
ranches are being subdivided into
parcels held by individuals or families.

Many of the goals of group ranch
formation have not been met. Land has
tended to stay in Maasai ownership
(ironically, in some cases because
ownership amongst members is
contested in court, preventing land
sales), but livestock production has not
improved, and continued subdivision
bodes poorly for the future (Boone and
BurnSilver, In press). There are many
reasons for this, but here we focus upon
access to forage. Greenness profiles
from NDVI demonstrate effects of
fragmentation. In Ilkisongo Maasia
Section (Figure 1a), 1 km2 pixels show
a broad diversity of profiles – herders
that occupied patches with inadequate
forage had opportunities to move their
livestock to more productive patches.
Within Imbirikani Group Ranch (Figure
1b), the diversity of greenness profiles is
reduced, reflecting fewer options
available to herders to respond to
stresses such as drought. Finally, within
a single fenced 5 km2 parcel that is
individually held (Figure 1c), the
profiles essentially overlay each other,



Figure 2. Parcel maps used in spatial analyses, fragmenting a 300 km2

landscape block that is 20 km east-west and 15 km north-south. The area of
each parcel and the number of parcels are shown below each map.

and there is little option available to the owner if forage production is low. We have been told that subdivision of group
ranches into individual holdings is inevitable. If true, one means of increasing options for herders is for them to join grazing
associations (Figure 1d), which increases the diversity of patches available for grazing (Boone and BurnSilver, In press).
The general reduction in options available to herders suggested in Figure 1 is likely broadly applicable, but in semi-arid and
arid areas, loss of access to water may overshadow access to forage. Some owners will receive well-watered, productive
parcels. However, most ranch members in southern Kajiado District will gain title to parcels without water and with poor
forage production.

Spatial Scale and Greenness
Oesterheld, DiBella, & Kerdiles (1998) has demonstrated a strong correlation (e.g., r2=0.90, P < 0.001, df=61) between
integrated NDVI values and regional livestock stocking rates in Argentina, and Boone has explained 60% of the variation
in cattle stocking rates in rangeland districts of Kenya using integrated NDVI (unpublished data). However, these data were
derived from large regions, and are for areas where animals can move about relatively freely. The effect of fragmentation
shown in Figure 1 suggests that appropriate stocking for landscape patches should include an area measurement, or some
other metric reflecting landscape heterogeneity. Developing such metrics are a focus of current research. A promising
measure for remotely sensed data is simply the coefficient of variation (CV) of pixel values within a landscape patch. To
apply this to annual greenness profiles comprised of 36 images, the CV of the pixels within the area of interest (e.g., group
ranch, farm, or parcel) was calculated for each image. The mean value of the 36 CVs represents the vegetative diversity
of landscape patches available to large herbivores. We calculated the CVs of pixels for all VEGETATION images for a
series of nested parcels within a 300 km2 block of land. For analyses, each 300 km2 block was divided into 1 to 30 parcels
(Figure 2). Five locations around each of Maasai Mara National Reserve, Kenya, Ngorongoro Conservation Area and
Tarangire National Park, Tanzania, and Kruger National Park, South Africa (maps, Figure 3) were sampled.

As expected, the effect of decreasing
parcel area on NDVI diversity was
log-linear (Ritchie & Olff 1999), and
varied across sites (graphs, Figure 3).
T o p o g r a p h i c a l l y d i v e r s e
Ngorongoro/Tarangire (Figure 3a) had
higher CVs than the flatter Maasai
Mara and Kruger regions (Figure
3b,c). Areas with high NDVI values
generally have higher herbivore
stocking rates (Oesterheld et al. 1998).
But if NDVI were equal across sites,
the higher heterogeneity in
Ngorongoro/Tarangire suggests
stocking would be higher on those
sites than on Maasai Mara or Kruger.
The steeper slope relating parcel area
to CV indicates fragmentation would
have a relatively greater effect on
stocking in Ngorongoro/ Tarangire
than the other sites (Figure 3). The
spread of CVs around the mean values
was high, however, with area weakly
correlated with CVs (Spearman’s D,
Ngorongoro/Tarangire = 0.52, Maasai
Mara = 0.49, Kruger = 0.41). This
reflects that, even with the smallest
parcels, some patches remained
heterogeneous, but the tendency was toward homogeneity. How this tendency for fragmentation to reduce vegetation
heterogeneity relates to carrying capacity is discussed in the next section.

Ecosystem Modeling

SAVANNA Modeling System
To begin evaluating the effects of decreasing heterogeneity upon carrying capacity, we used the SAVANNA modeling
system. Initial development of SAVANNA began in the Turkana District of Kenya (Coughenour et al. 1985), and
improvements to the model were made in subsequent applications (e.g., Coughenour & Ellis 1993; Boone et al. 2002;



Figure 3. The relationship between parcel area (see Figure 2) and the
spatial variation in NDVI, related to habitat heterogeneity, with standard
errors in bars. Five 300 km2 blocks of land are summarizes in each
graph, for areas around (a) Ngorongoro Conservation Area and
Tarangire National Park, Tanzania, (b) Maasai Marai National Reserve,
Kenya, and (c) Kruger National Park, South Africa. Insets show the
locations of these block, and the region within Africa.

reviewed in Ellis & Coughenour 1998).
SAVANNA has been used, for example, to:
evaluate grazing capacity for livestock and
wildlife of Kruger National Park, South Africa
(Kiker 1998); and address potential
management questions in Ngorongoro
Conservation Area, Tanzania (Boone et al.
2002).

SAVANNA is a series of inter-connected Fortran
computer programs that model primary
ecosystem interactions in arid and semi-arid
landscapes, simulating functional groups for
plants and animals. SAVANNA is spatially
explicit and represents landscapes by dividing
them into a system of square cells. SAVANNA

reads computerized maps that include, for
example, the elevation, aspect, and soil type of
each cell. The model predicts water and
nitrogen availability to plants using rainfall and
soil properties, for each of the cells. Based
upon water, light, and nutrient availability,
quantities of photosynthate are calculated for
plant functional groups, using process-based
methods (Lambin, Rounsevell, & Geist 2000).
Photosynthate is distributed to leaves, stems,
and roots using shoot/root ratios and other
plant allometrics, yielding estimates of primary
production. Plant populations are calculated
from primary production.

A habitat suitability index is calculated for
each cell in the landscape, at weekly intervals
and for each animal functional group, based
upon forage quality and quantity, slope,
elevation, cover, water availability, and the
density of herbivores. Individuals in the
population are distributed on the landscape
based upon these indices. Animals will feed
upon the available vegetation, depending upon
dietary preferences and consumption rates.
The energy gained is reduced by energy costs
associated with basal metabolism, gestation,
and lactation. Net energy remaining goes
toward weight gain, with weights reflected in
condition indices. Summaries of the status of
vegetation, herbivores and climate are
produced at monthly intervals. For more detail
about SAVANNA, see Boone and Coughenour
(2001).

Hypothetical Application
A hypothetical application was used for these analyses, but it was based upon an existing application of SAVANNA to the
Vryburg area in the North-West Province of South Africa (SAVANNA version 4L). In an application, plant and animal
functional groups must be defined, based upon the questions to be addressed, balancing the need for detail in responses and
the costs of parameterization and execution. The application that was modified included seven vegetation functional groups:
1-3) high, moderate, and low palatable grasses, 4) annual grasses, 5) acacia shrubs (e.g., Acacia mellifera), 6) camphorbush
shrubs (Tarchonanthus camphoratus), and 7) acacia trees (e.g., A. tortilis). Grasses were grouped into palatability classes
reflecting their general acceptance to livestock. Originally, five animal functional groups were defined (i.e., cattle, goats,
sheep, horses, and donkeys). Herbivore populations show complex compensatory responses, making calculations of



standardize metrics (e.g., tropical livestock units) complex and potentially misleading. Here, the hypothetical application
was made as straightforward as possible. A single herbivore functional group was parameterized, representing cattle, and
the seven vegetation functional groups remained as described.

A 300 km2 block (20 km x 15 km) within Vryburg 1 Township was selected for modeling. Elevation, slope, and aspect were
derived from a digital elevation model produced by the US Geological Survey and acquired from the African Data
Dissemination Service (ADDS 2001). The block contained a single vegetation type (Low & Robelo 1996), Kalahari Plains
Thorn Bushveld. Soil types were taken from the Land Type database available for South Africa and provided to us by the
Department of Agriculture, North-West Province. All geographic data were generalized to 1 km x 1 km resolution cells.
Weather data were supplied by the South African Weather Service for 166 weather stations in the region. Records included
precipitation and minimum and maximum temperature, and spanned from 1900 to 1995. Carrying capacity is related to
climate history in a complex way that was not the focus of these analyses. We therefore used a method within SAVANNA

to generate a random weather history, where weather information for a year is drawn from the weather data randomly.
Water sources are typically used in SAVANNA, represented as distance-to-water maps that comprise a component of the
habitat suitability index for herbivores. In this hypothetical application, water was assumed to not be limiting (i.e., distance-
to-water was not included in the suitability measures). This allowed effects of fencing to be explored without being
confounded by whether or not a fenced area included a borehole.

Parameters were set in the model, based upon an extensive literature review, previous SAVANNA applications (e.g.,
Coughenour 1992; Kiker 1998; Boone et al. 2002), field work, and expert opinion. Individual parameters are too numerous
to cite, but examples may be classified within groups of ecological processes: plant phenology and biomass (e.g., Ndawula-
Senyimba 1972; Theunissen 1995), plant allometrics and growth (e.g., Coughenour, Ellis, & Popp 1990; Tewari 1996),
livestock energetics and growth (e.g., Stafford Smith, Noble, & Jones 1985; O’Reagain & Owen-Smith 1996), grazing
effects and stocking (e.g., Danckwerts & Nel 1989), and effects of rainfall variability (e.g., Donaldson 1967; O’Connor
1994). The initial stocking rate for the block was based on the recommendation from the Department of Agriculture, South
Africa (1999). They recommended the site be stocked at 7 ha per large stock units (LSUs). Taking each animal to be equal
to one LSU, the 300 km2 would therefore support 4,286 cattle. Parameters were adjusted until the modeled population
averaged about 4,286 cattle over a 30 year simulation. The population varied by more than 50%, however, in response to
droughts, as seen in the region.

Model performance could not be compared to real-world data in this hypothetical application. However, the overall
structure and algorithms of the model have been validated extensively in a variety of contexts (e.g., Kiker 1998; Boone et
al. 2000; Weisberg et al. In press). In the application for the North-West Province of South Africa, modeled herbaceous
aboveground biomass was compared to NDVI (ADDS 2001). We judged that phenology and relative greenness of plants
were being represented well by the model.

Analyses used the spatial arrangement fenced parcels shown in Figure 2, with parcels ranging from the entire 300 km2 block
modeled, to 30 parcels, each 10 km2. The model was run separately for each of the parcels, with cattle confined to the parcel
in question. The initial number of cattle in the model run at 300 km2 that yielded appropriate stocking was 4000 animals.
For each run with a smaller parcel, the initial stocking was adjusted using a simple linear relationship with area (e.g., for
150 km2, 2000 cattle, 100 km2, 1334 cattle, etc.). Each simulation was run for 30 years, and average stocking in the last
15 years of the simulation was the response of interest, representing capacity after a 15 year period to attain some degree
of balance with the environment in the parcel. Stocking rates were summed across parcels, so that in each case, the measure
of interest was the number of cattle that could be supported on 300 km2. Weather history affects stocking strongly in this
arid region, so weather was the kept the same for analyses of the parcels (i.e., 300 km2 to 10 km2), but the entire suite was
modeled 12 times, using a different randomly generated weather pattern for each set.

Results of Ecological Modeling
The carrying capacity of the 300 km2 block declined steadily with increasing fragmentation (Figure 4), although capacity
varied depending upon weather history, leading to variation in carrying capacity (stocking = 3583 + 2.858 * parcel area in
km2, r2 = 0.41, P < 0.001). In general, when the 300 km2 block was fragmented into 10 km2 parcels, the same 300 km2 block
supported almost 1,000 fewer cattle then when unfragmented. The implications of these results are profound, although this
is a single example that frames our future research, rather than an end in itself. How does vegetation heterogeneity (e.g.,
Figure 3a versus Figure 3c) affect the relationship in Figure 4? Is the relationship similar for more productive sites? Is
topographic complexity more important in determining the slope of the relationship in Figure 4 than vegetation complexity?
Is the relationship ameliorated by a larger herbivore community? If the species were migratory, and required more diverse
resources, would the slope shown in Figure 4 be steeper? These and other questions will be addressed by our ongoing
studies.



Figure 4. The effect of reducing parcel area on the number of cattle that may
be supported on a parcel in an arid south African landscape, with standard
error bars. Responses were more variable as parcel area declined, but the
larger sample size (e.g., 30 of the smallest parcels versus a single large parcel)
led to smaller standard errors.

CONCLUSIONS

There are clear benefits to fencing
parcels, including allowing exclusive
access and assignment of title.
Governments encourage parcels to be
fenced, without considering indirect
costs, such as the amount of external
inputs that will be required to offset
declining livestock productivity. Results
such as those in Figure 4 will allow
policy makers to better consider costs of
fragmentation on herbivore production,
and balance them against benefits. In
some cases the benefits of subdivision
may outweigh the need for external
support. In other fragmented areas, it
may be most economical to remove
fences, reduce fragmentation, and allow
herbivores to access a greater diversity
of landscape patches.

Where fences are used, they should be
properly designed, so as to reduce fence
mortality (e.g., Goddard et al. 2001). In
general, US state governments have
designs available that are appropriate for
the area wildlife and livestock (e.g.,
Denney 1964). Fences can be
expensive to construct and difficult to
maintain, so the fence should only be
built to meet the need. Creative
solutions are possible, especially where semi-permeable fences are adequate. Mirrors, reflectors, repellants, and lights may
be used to alert wildlife to rarely traveled roads, for example. Permeable sections may be incorporated into impermeable
fences, using gates or underpasses (Putman 1997), with accompanying guide fences to direct wildlife. In cases where
fencing is not required year-round, such as in crop production, wire fences may be dropped to the ground or sections opened,
to allow animals to pass freely a portion of the year. If protection of crops was needed, for example, ecosystem integrity
may be better served if the cropland were fenced, rather than the conservation area from which wildlife disperse. Fences
that are no longer needed should be removed and recycled, a task some non-profit groups will do at no costs. In general,
“fencing should solve the problems, not export them to adjacent areas” (Hoare 1992).

When a fence is removed, often the herbivores return quickly, such as elephants migrating from Kruger National Park into
newly opened areas (e.g., Hiscocks 1999). In other cases, effects of fencing are long-lived. Hewson & Wilson (1979)
document sheep herds remaining in traditional grazing areas defined by fences that were removed decades before, a pattern
stronger than any effect associated with vegetation. Whyte & Joubert (1988) predict that if fences on the western border
of the central district of Kruger National Park were removed, the wildebeest population would not rebound, nor would the
surviving individuals adopt the migratory ways of their ancestors. Such predictions are testable – those fences are now being
removed (De Vos et al. 2001). “What is happening today in Botwana is what happened in, for example, Kenya in the 1920s,
when the Rift Valley farms were fenced, preventing the migration of wildebeest and zebra.” (Spinage 1992). We know
today that wildebeest populations in the Rift Valley recovered from fencing. We have opportunities to document population
responses to fence removal. Quantifying habitat or life history attributes that make some effects of fencing on populations
reversible whereas others are not would be helpful to conservation.
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