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32 Soil Organic Matter in Temperate Agroecosystems

decomposition.®*$* Numerous field studies show increases in macroaggregate stability with reduced
tillage, with no-till generally showing the highest degree of aggregate stability compared with conven-
tional tillage employing moldboard plowing.!!8-122 While differences between various forms of interme-
diate tillage are less clear, aggregate stability tends to decrease with increasing tillage intensity.!?3

Tillage practices which promote the greatest degree of soil disturbance also tend to be the most
effective at burying crop residues. Estimates of residue burial rates for a variety of primary and secondary
tillage implements are given in Table 3. The degree of residue incorporation has a major effect on the
initial rate of decomposition. In temperate environments, decomposition rates of residues are generally
slower when left on the surface than when buried in soil."»*'?" Drier conditions and reduced mineral
nutrient availability are probably the main reasons for reduced microbial activity in surface residues.
Under some conditions, temperature extremes in surface residues may also be detrimental to microbial
activity. For example, temperatures as high as 60°C have been recorded in unshaded residues under
wind-still conditions in Australia'?® and the western U.S.1%

Table 3 Percent of Crop Residue Remaining on Soil Surface Following
Tillage Operations

Residue Remaining (%)

Tillage

Implement Good and Smika Tindall and Crabtree Stott
Moldboard plow NI 0-5 24
Tandem disk 25 50 30-60
One-way disk 50 50-60 NI
Chisel plow 90 75 50-752
Sweep plow ’ 90 85 85-90
Rod weeder 85 85-95 80-85
No-till drill NI NI 90-95°

Note: Values by Good and Smika'* and Tindall and Crabteee!s! are for wheat residues.
Ranges reported by Stott!*2 are from calculations usiiig a general model for residue
management which is parameterized for 21 major crop species. NI denotes not
included in the cited reports.

2 Chisel with straight shank.

b No-till drill with smooth coulters.

The combination of reduced litter decomposition rates and less soil disturbance usually results in
greater amounts of soil C in no-till vs. conventionally tilled systems. Differences in C content between
no-till and conventional till are most extreme near the surface, primarily due to differences in the
distribution of C inputs.'** Consequently, comparisons of tillage effects based on sampling only the top
few centimeters of soil can give a misleading and overly positivé impression of the C buildup under no-
till. However, comparisons based on deeper sampling where C levels are summed to below depth of
plowing usually show higher overall levels in no-till (Figure 9). These data are from a number of long-
term field studies, with paired conventional and no-till treatments. Carbon content and bulk density data
were used to calculate C on a square-meter basis to below depth of plowing (generally 30 cm) and
expressed on an equivalent soil mass basis to correct for differences in bulk density due to tillage.1** A
number of other studies,!35-'*! most of which report increased C concentrations under no-till, were not’
included because of a shallower sampling depth or a lack of information on bulk density.

The average increase in soil C under NT was about 300 g m with a few site/treatments showing
increases as high as 1 kg C m2 (Figure 9a). On a relative basis, most sites showed 5 to 20% increases
in soil C under NT vs. CT (Figure 9b). The range in absolute differences in C varied little as a function
of total soil C (as measured under CT) and thus the relative difference tended to decrease with increasing
soil C. It should be noted that the surface mulch which builds up on many NT soils may not be fully
accounted for in comparisons of plowed and NT systems, if sampling has been restricted to the mineral
soil. In such cases the effect of NT on total C storage would be underestimated.

There is no apparent pattern related to soil texture, with the exception of two instances showing
substantially lower C under NT (e.g., Figure 9a). Both of these comparisons are for poorly drained clay
soils with cropping systems producing lower residue yields (i.e., continuous soybeans® and com-
soybean'*). The negative results may be associated with reduced yields and residue inputs with NT on
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Figure 9 Soil carbon levels in pair-wise comparisons of no-till (NT) and conventional tillage (CT), with moldboard
plow, from several long-term experiments. Shown are (a) absolute difference (NT-CT) and (b) relative difference
((NT-CT)/CT) as a function of soil C (under CT) and (c) absolute and (d) relative ditferences as a function of
time under NT. Values are for total organic C to depths at or below depth of plowing and adjusted for differences
in bulk density for comparison on an equivalent soil mass basis (see description in text). Filled circles are for
clay and clay loam soils, all other textures shown as open circles. Each site/treatment is only represented once,
by the most recent published value. Data from Powlson and Jenkinson,'3* Dick,'#2 Groffman, 43 Dick et al.,44-145
Doran,'33 Dalal,'#¢ Balesdent,'¥” Havlin et al.,#8 Chan et al.,?? and Ismail et al.'*®

the wet clay soils and perhaps less moisture limitation on the decomposition of surface residues compared
with better-drained soils. Overall, fine-textured soils tended to have the highest organic matter contents
and hence show smaller relative differences between NT and CT.

There was no clear trend in tillage-induced changes as a function of time under no-till (Figure 9cd).
There appears to be an early rapid gain in C following conversion to NT followed by a stabilization or
much slower rate of C increase. However, site-specific and other management differences likely confound
the interpretation so that generalizations regarding temporal dynamics cannot be made on the basis of
cross-site comparisons. Unfortunately, relatively few studies of NT have been in existence for sufficient
time to generate reliable time-series from repeated measurements. Plots at Lexington, Kentucky, and at
Hoytville and Wooster, Ohio (see Chapter 12) have been sampled repeatedly over a 20- to 30-year period.
At Lexington, there was an increase in C with time under NT, such that, after 20 years, C contents
exceed that of the original bluegrass sod.!*> However, there was a similar although lower increase under
CT, reflecting the influence of the high residue inputs under both tillage treatments.'In 25-year-old tillage
experiments, Dick et al.”! reported that the most rapid changes in C levels under NT occurred during
the first 10 years. Repeated sampling of NT plots in Saskatchewan over a 13-year period showed an
increase of 15% in soil C (for O- to 15-cm depth) after 6 years, whereas C increased by only an additional
4% during the subsequent 7 years (Campbell, C.A., unpublished data). In a study of a NT chronosequence
at Coshocton, Ohio, Staley et al.1*° found that total C was positively correlated to years under NT and
that microbial biomass-C responded quickly to NT management and reached a new equilibrium value
after about 10 years.
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One reason that soil C responses to tillage are difficult to generalize is that tillage practices can have
indirect effects by influencing crop productivity and thereby crop residue inputs. Lower soil temperatures
under NT may delay germination and early plant development in regions with short growing seasons.!!¢
Lower yields with NT under such conditions has been cited as limiting its applicability in cool
regions.'s"152 However, major yield reductions in cool climates are not universal. Riley et al.,'** in
summarizing field experiments for Denmark, Norway, and Sweden, found that NT yields averaged
between 91 and 99% of yields obtained with plow tillage. Interestingly, Knight and Lewis!'> reported
higher spring soil temperatures and comparable yields in NT vs. CT in central Alaska; this was attributed
to the insulating effect of greater snow retention due to more residue coverage under NT.

No-till often gives lower yields in poorly drained soils, which are subject to compaction in the absence
of tillage, causing restricted root growth and greater susceptibility to disease than under CT.!5-157 The
retention of surface residues and lack of soil disturbance associated with NT have been found to increase
the severity of a variety of wheat diseases, resulting in reduced yields.!® However, crop rotation and
use of disease-resistant cultivars can reduce disease-induced yield declines in NT.'* In Indiana, yields
under NT were lower for poorly drained soils with high organic matter contents, but yields were greater
with NT on low organic matter soils with either poor or good drainage.’?!1® Reduced tillage systems
(chisel plow, ridge tillage) showed yield responses intermediate to plow tillage and NT.

Many other studies have shown no or variable differences in crop yield response to tillage'®*-12 and
higher production under no-till has been shown for well-drained soils, particularly where water use
efficiency is improved.!16163 Prasad and Power®' summarized the expected differences in yield between
no-tiil and conventional till as follows: (1) little difference under conditions of adequate soil water, good
drainage, and adequate available N; (2) increased yields under no-till where there is limited precipitation
and soil water and adequate weed control and fertilization; and (3) reduced yields under no-till in areas
with excessive precipitation, low temperatures, poor drainage, poor weed control, or low fertility levels.

Effects of tillage on soil physical parameters such as bulk density, porosity, pore size distribution,
and pore continuity provide additional indirect controls on decomposition and soil C levels. Increased
bulk density and reduced porosity in upper soil layers can occur under NT,716+-165 accompanied by a
reduction in the number of large pores.!65166 For the root zone as aswhole, however, the effect of surface
compaction under no-till may be compensated for by lower bulk densities and increased porosity deeper
in the profile.160161.166,167 Plow pans, which can impede water movement and root penetration, may not
form so readily with reduced tillage.'65168 In other cases, NT or other reduced tillage practices have had
no effect on or have decreased bulk density.!22167.169.170 In most cases, irrespective of changes in overall
porosity, no-till soils have equal or increased water infiltration rates, 2160161164166 probably due to greater
continuity of macropores, such as earthworm burrows and root channels. The net effect of tillage-induced
differences on soil water will vary for individual soils. However, the greater water capture and lower
evapotranspiration of reduced tillage systems will generally increase soil moisture which may favor
higher decomposition rates of root residues within the soil, in contrast to the lower decomposition rates
of residues on the soil surface, as discussed earlier.

To summarize, it seems clear that reduced tillage, and especially no-till, is generally effective in
increasing soil C, provided that yields and residue production are not adversely affected. Whether
increases in soil C continue over long periods of time and how closely no-till soils can be made to mimic
the characteristics and C levels of soils under native perennial vegetation remains to be seen. Because
of the greater below-ground allocation in native perennial systems and the removal of a substantial
portion of the net primary productivity in agricultural systems, it is unlikely that use of no-till practices
alone can achieve the soil C levels of native ecosystems. However, if C inputs to soil can be increased
to a similar magnitude as in native systems, by increasing nutrient and water supply and using highly
productive crop species, then a restoration of soil C to precultivation levels (or higher) may be possible
under no-till management.

D. CROP ROTATION

The selection of crops to be grown is the most basic management decision faced by the farmer and, as
discussed in the earlier section on land resource areas, this decision is constrained by both climatic and
economic factors as well as land suitability. It is recognized that the selection of crops grown may be
closely linked to other management factors such as tillage (e.g., annual vs. perennial crops) and fertility
(e.g., legumes vs. non-N-fixing crops). However, in this instance we focus mainly on how crop type,
residue yield, and fallow frequency influence C inputs and the decomposition environment.
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Overall comparisons of soil C contents under rotational systems vs. continuous corn, or continuous
wheat, reveal some general patterns (Figure 10). Where corn is the dominant annual crop, only rotations
which contain grass or forage crops show consistently higher C levels compared to continuous corn.
For the most part, corn-soybean rotations show lower values, with the notable exception being the
Morrow plot corn/soybean (earlier corn/oats) rotation (far right, Figure 10). The Morrow plot results,
however, are atypical, as discussed below. In the wheat-dominated systems, there are few examples of
rotations which yield higher C levels than continuous wheat except for a few treatments including green
manures or legume crops. Rotations including 1 or 2 years of hay as well as rotations including other
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cereal crops show little effect on C content compared with continuous wheat. Wheat-fallow systems,
however, show as much as 40% lower C compared to continuous wheat (Figure 10).

% INCREASE OVER CONTINUOUS CORN

100
80 -
O 60 ~ i [ |
] L
(g 40 «
= o U A
B 200 o o
0]
T ga—T 5 ®
20 F =k
_40 1 1 1 | 1
0 20 - 40 60 80 100
+5  Years of Cultivation
A [w} L ] * n
with fallow with cereal with grass/forage with soybean monoculture
% INCREASE OVER CONTINUOUS WHEAT
100
n
80 -
o 60 -
= | |
&S 40Ff
g
£ 20} =
D * .
T 9
® [=)
A5 By a2
20F A A g
-40 | % IA 4 1 1
0 20 40 60 80 100
Years of Cultivation
A [m} o * n

with fallow  with cereal  with grass/fforage  with green manure

virgin pasture

}

Figure 10 Summary of rotation influence on soil C levels, shown as percent of soil C under continuous corn or
continuous wheat treatments in the same experiment, plotted as a function of experiment duration. Symbols
depict different classes of rotations for corn- and wheat-based cropping systems. Data from Haas et al.,”
Anderson and Peterson,% Barber,'¢ Hooker et al.,'”' Odell et al.,*® Upchurch et al.,'72 Dick et al.,'*+5 Soon and
Broersma,!” Insam et al.,'”* Rasmussen et al.,*> Campbell et al.,#17> and Monreal and Janzen.!7®
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1. Rotations with Annual Crops

The effect of rotations of annual crops on SOM may be attributable mainly to the amount of residues
produced and returned to the soil. Representative yields of major field crops and estimates of associated
above-ground crop residues for different regions in the United States are summarized in Table 4.
Typically, highest residue levels for row crops are produced by C, feed grains such as corn and sorghum.
Soybeans, mostly grqwn in rotation with corn, produce less than half as much residue. Residue production
from most small-grain cereals is intermediate. It is more difficult to generalize about below-ground
residue production, due to the limited number of measurements and differences in methodologies to
determine below-ground productivity. However, for most annual crops, C inputs from root production
usually account for 20 to 40% of total dry matter production.!7-17

Table 4 Approximate Crop Residue Yields (above Ground Only) for Different
Crops Based on Average Yields for the U.S.180

Yield Yield Harvest Index Crop Residue

Crop (bushels/ha) (kg/ha) (%) (kg/ha)
Soybean 34 2000 50-60 13002000
QOats 51 1800 40-50 1800-2700
Wheat 34 2300 35-45 28004300
Barley 55 3000 45-50 3000-3700
Sorghum 59 3300 .35 6100
Corn 108 6800 40-50 6800-10200
Sorghum (silage) na 9070 na na
Corn (silage) na 11,790 na na

Note: Estimates of harvest index values of most crops based on Anderson and Vasilas,'®! Brinkman
and Rho,*2 Cox et al.,'®? Donald and Hamblin,'3* Meyers et al.,’85 Russell, '8 and Walker and
Fioritto.'8” Harvest index for sorghum based on silage yields as an estimate of total above-

ground dry matter production.
”
A

Other species characteristics, such as residue quality, are dtso important factors affecting rotation
responses. Cereals such as wheat and barley appear to have somewhat higher lignin contents (e.g., 16
to 24%) compared to corn (11 to 16%)'81%% which can retard decomposition rates and increase C
stabilization efficiency as discussed previously.

The influence of crop rotation on residue production and soil C changes has been demonstrated in
several long-term field experiments. Zielke and Christenson!'® found that changes in soil C for six
rotations including corn, sugar beet, navy bean, oats, and alfalfa were closely correlated with the amount
of residue returned. Carbon levels increased with the frequency of corn in the rotation. Similarly, Havlin
et al.!¥8 reported that rotation effects on soil C were directly related to the amount of residues produced,
where continuous sorghum > sorghum-soybean > continuous soybean at two sites and continuous corn
> corn-soybean > continuous soybean at another site. Campbell and Zentner!®! found that changes in
SOM reflected the residue production of each rotation and its susceptibility to erosion. Organic matter
in several rotations increased during a 15-year period of high crop yields and then decreased with lower
production during a subsequent dry period.

At first glance, results from the Morrow plots (Figure 10, far right for “corn”) appear to contradict
this pattern with the corn-oat (later corn-soybean) rotation having higher values than continuous corn,
despite the lower residue yields expected from oats and soybean. However, as Guernsey et al.'? report,
corn yields in the corn-oat rotation were nearly twice as high as in continuous corn through the first 80
years of the experiment. Moreover, the corn-oat rotation included a legume catch crop following oats,
which provided additional organic matter and probably accounted for some of the higher productivity
in the following corn crop. Based on yield information it appears likely that past residue inputs in the
corn-oat rotation exceeded that in continuous corn. At two sites in Minnesota, Crookston et al.!? reported
an average of 10% higher corn yields in rotation with soybean as compared to continuous corn. Thus,
if corn production is increased by rotation this can help offset lower residue inputs from other crops in
the rotation.

In semiarid agricultural systems, where summer fallowing is routinely practiced, decreases in SOM
with increasing fallow frequency have been well documented.3:110.191.194-197 Data from three Canadian
sites show a roughly linear decrease in soil C with increasing proportion of fallow in the rotation
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(Figure 11). Summer fallowing is conducive to increased rates of organic matter decomposition for
several reasons, including increased soil moisture, increased soil temperatures, increased soil disturbance
associated with mechanical weed control during the fallow period, and greater susceptibility to erosion.
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Figure 11 Soil C response to fallow frequency, as a percentage of C content under continuous cropping, for
three long-term experiments with fallow-wheat, fallow-wheat-wheat, and continuous wheat rotations in
Saskatchewan. Data from Campbell et al.2817% and Janzen.'®* Rotations at Indian Head and Swift Current were
N+P fertilized and those at Lethbridge were unfertilized.

Summer fallowing also affects total C inputs over the course of the rotation. In unfertilized systems,
wheat yields following fallow may be nearly double those with continuous wheat!!8 and if residues are
assumed to be proportional to yields then average C inputs might not be greatly different. However,
moisture stress often results in a higheg,%roportion of C allocation to crop roots!%-2% so that the ratio
between total residue production (including roots) and yield could be greater in continuous wheat
compared to wheat-fallow systems. The impact of fallow frequency on average residue return rates can
also vary with N availability. Where N fertilizer was applied, Horner et al.® found that annual wheat
yields with continuous cropping were about 70% of those in wheat-fallow, which would give greater
residue inputs with continuous cropping over the course of the rotation.

2. Rotations with Perennial Crops

Inclusion of perennial crops into the rotation has long been recognized as an effective means of increasing
SOM. Interestingly, Johnston?®! attributes the relatively high organic matter content of many English
arable soils, which have been under cultivation for several hundred years, to periodic reversions to pasture
during times of economic depression. As discussed in the first part of this paper, the development of ley
cropping played an important role in the increased productivity and soil fertility of late pre-industrial
agriculture.

The efficiency of rotations that include hay crops (i.e., leys) in maintaining or increasing soil C tends
to be greater in more humid regions. Clement and Williams?*? reported an average increase of 15% in
total soil C after 4 years of pasture whereas C decreased in annually cropped treatments. Grazed pastures
had greater increases than where hay was mowed and removed. Long-term rotations at Woburn (U.K.)
had approximately 25% greater C levels in 5-year rotations with 3 years of ley compared with 5 years
of only annual crops.2%! In experiments on both old grassland soil and old arable soil at Rothamsted,
6-year rotations with 3 years of fertilized grass or grass-clover ley increased soil C by 10 to 15%
compared with rotations with annual crops only. In contrast, where alfalfa was used as the hay crop, C
levels were no higher than in the annual crop rotation.”*! Increases in total C levels under ley cropping
have been reported in a number of other European studies.!”4203-205 Jn Indiana, 7 years of continuous
alfalfa or bromegrass yielded up to 25% more soil C than continuous corn.?% However, 4 years of pasture
crops followed by 3 years of corn resulted in similar C levels as found in continuous corn. In a study
comparing continuous cotton with lespedeza, a perennial forage crop, Davidson et al.?” found dramatic
increases in soil C under lespedeza (to 30-cm depth), with C levels nearly double that in cotton in the
top 10 cm.
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Use of perennial crops in rotation in dry climates is constrained by moisture limitations and cereal
crop harvests following perennial crops are often reduced.!"'* In summarizing results from 17 long-
term sites in the Great Plains, Haas et al.!! concluded that biennials and perennials (e.g., sweet clover,
ryegrass) grown for 1 year as green manure crops were not effective at reducing soil C declines in 2-,
3- and 4-year cereal-based rotations. However, other studies under semiarid conditions in the U.S. have
shown less decline in soil C using hay crops in rotation with cereals compared to cereal-only rota-
tions.2%-210 In several studies for the subhumid regions of the Canadian prairies, summarized by Campbell
et al.,?'! rotations with forage crops gave roughly similar C levels to those in continuous wheat. In
Australia, use of forage crops in wheat rotations has become an important management practice for
dryland agriculture?'? As an example, Drover'?’ reported that fallow-wheat-lupin-lupin rotations
increased C levels by 12% compared to continuous wheat, in a sandy loam brown soil, and 33% in a
lateritic sand. On these nutrient-poor soils, productivity and residue production of the wheat crop was
greatly enhanced by the increased N supplied by the legume. Grace et al.?!3 cite several other examples
of soil C enhancement of dryland wheat systems in Australia by the incorporation of 1- or 2-year legume
pastures into the rotation.

Changes in the distribution and amount of C inputs and the absence of tillage are key components
of the ability of perennial crops to sequester C. Rapid increases in total C following initiation of ley
cropping are largely due to increases in particulate organic matter (POM), comprised of partially
decomposed root and leaf material. Garwood et al.?# reported that POM (>0.25 mm) was twice as high
under grass-legume leys as in arable soils and that about half of the increase in total carbon during a
4-year ley cycle was in this fraction. Comparing soils under pasture (2.7% C) and wheat-fallow (1% C),
Oades and Turchenek?' reported that the pasture soil was enriched mainly in the POM fraction and in
silt-sized fractions which were thought to represent microbial debris. Tyson et al.?% found that POM in
a 30-year-old ley was four times that in the annually cropped treatment and POM comprised 15 to 20%
of the total C in the pasture. Similarly, budgets of continuous barley, grass, and alfalfa leys reported by
Paustian et al.?% showed a total C increase of ~1.5% in the two leys the 2nd year after ley establishment,
due to increases in POM and litter and standing root biomass.

AR
Table 5 Influence of Previous Cropping History on
Aggregate Stability, Expressed as Mean Weight Diameter
(MWD, i.e., aggregate stability increases with increasing MWD)
and Organic Carbon in a Lismore Silt Loam in New Zealand

Aggregate Stability Organic C
Cropping History (MWD) . (%)
10 year arable 1.0 2.0
4 year arable 1.2 24
1 year arable 1.3 24
1 year pasture 2.0 L 2.4
4 year pasture 25 2.5
10 year pasture 2.7 32

Note: Cropping histories for arable systems indicate years under annual
cropping after coming out of pasture and conversely, for pastures,
years in pasture after coming out of annual cropping.

Data from Haynes, R. J., Swift, R. S., and Stephen, R. C., Soil Tillage Res.,

19, 77, 1991.

Thus, the maintenance of higher soil C under perennial crops will be associated with a relative increase
in POM and an increase in the physical protection of SOM. Aggregate stability increases rapidly after
perennials are established (Table 5), both due to a lack of tillage disturbance and the characteristics of
the below-ground system of most perennial grasses. These characteristics include a dense, fibrous root
system, which helps to form and bind soil aggregates, and the large production of fungal hyphae and
microbially derived polysaccharides and gums, which are effective in binding mineral and organic matter
particles. Over extended time periods, POM under perennial crops can be maintained at higher levels
and gradually more resistant humic substances are formed. However, the potential for long-term C
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stabilization may not be realized until after several cycles of aggregate dissolution and reformation have
led to the encapsulation and protection of organic matter within stable soil aggregates. Thus, while rapid
losses of physically stabilized C can occur with cultivation of native grassland or old pastures, restocking
this stable C pool through conversion to grassland or pastures may occur more slowly.?!” Accordingly,
increases in soil C under rotations of alternating annual and perennial crops are likely to be transient
unless inclusion of the ley substantially increases C inputs over the course of the rotation, as appears to
be the case in many of the European experiments.

E. FERTILIZATION

Many of the oldest field experiments in Europe (e.g., Rothamsted, Askov, Halle/Saale, Limberhof,
Grossenzerdorf) were set up specifically to study crop production responses to the then newly developed
mineral fertilizers. Treatments were designed to compare a variety of fertilizer additions with traditional
fertility management using animal or green manure additions and controls with no added nutrients. A
secondary objective was to monitor changes in soil conditions, including organic matter, as affected by
mineral fertilizers. Numerous long-term studies involving fertilizers have subsequently been established,;
thus there is a wealth of field-based information available. Comparisons of N additions are most common,
although many studies have included varying P and K additions in their designs. In this discussion we
will focus on the effects of N fertilizer additions on soil C.

Nitrogen availability can influence soil C levels in a variety of ways. It is clear that by increasing
crop production, and thereby residue inputs, N fertilization can contribute to increased SOM contents.
By increasing plant growth, fertilization can also lead to increased transpiration, drier soils, and decreased
decomposition rates.!?6 Results from many long-term studies show a general tendency of increases in
soil C with substantive additions of N, compared to zero or low N additions (Table 6). The response
across levels of N is less clear, although several sites show a roughly monotonic increase in C levels as
N inputs increase. An exception is the site at Melfort, Saskatchewan, which shows no response to N
addition in this very high organic matter soil (approximately 6% C). As discussed earlier, Campbell et

al.% reported that soil C contents at thxsrsue were also unaffected by different levels of C input, which
suggests that the soil C holding capacq,y is essentially saturated. Thus, a lack of response to N, at least
as it affects C inputs, is not surprising.

Application of ammonium-based fertilizer in the absence of liming can promote soil acidification,
resulting in decreased decomposition rates, as shown for the unlimed, NH,-N fertilized plots in the
Parkgrass experiment at Rothamsted.??

Nitrogen additions can affect decomposition rates and C stabilization efficiency in other ways that
contribute to higher SOM levels. Fog??? reviewed 60 papers which reported zero or negative effects of
N addition on decomposition rates. He offered several possible explanations for negative effects of N
additions on decomposition, including the repression of lignolytic enzymes by ammonium and an
increase in the amount of amino compounds which can act as precursors in the formation of recalcitrant
humic compounds. At the microbial level, insufficient N can lead to lower yield efficiencies (i.e., more
CO, respired per unit C assimilated?®). Under such conditions addition of N could increase growth
efficiency resulting in a higher proportion of C inputs retained in SOM.

In an analysis of long-term plot studies with constant above-ground C, with and without N fertilization,
Paustian et al.?® found that increased root residue inputs could not account for observed increases in soil
C in the N fertilized treatments (Figure 12). They also found that soil C:N ratios were lower in the
unfertilized treatments, where straw or sawdust were added, suggesting that N limitation may have
reduced C stabilization efficiency. In a study by Campbell et al.,??5 soil C was found to be similar in
fertilized plots where straw was removed compared with fertilized plots where straw was retained. This
was despite the fact that C inputs were estimated to be greater in the treatment with straw retention.
One interpretation offered by the authors was that roots, rather than straw, were the primary source of
C to build stable organic matter.

In most field experiments it is difficult, if not impossible, to partition the interacting, and potentially
conflicting, effects of N addition on soil C. However, when viewed in a broad (if somewhat tautological)
sense, it is reasonable that, since C and N are the major constituents of SOM and their proportionality
(i.e., C:N ratio) is relatively constant across a range of agricultural soils, then an adequate supply of N
is required to build SOM. If inputs of these two elements are too much out of balance then the efficiency
of soil C sequestration will be reduced.
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Table 6 Summary of Long-Term Field Experiments Showing Soil C Responses to Differential
Levels of N Fertilizer Application (N Levels are Shown in Bold Type)

N Levels (kg ha-')

Site Years Treatment Soil C Change (% of Controf)
Mandan, MT?%® 7 0 30 60
) Sandy loam — continuous wheat 100 109 —
Sandy loam — crested wheatgrass 100 99 100
Silt loam — continuous wheat 100 107 —
Silt loam — crested wheatgrass — 100 102
Pendleton, OR?8 44 11 22 50
Wheat/fallow — moldboard plow 100 98 102
‘Wheat/fallow — disk 100 94 108
Wheat/fallow — sweep 100 103 108
Swift Current, 24 0 29
Saskatchewan!®! Fallow/wheat/wheat 100 104
Continuous wheat 100 109
Indianhead, 29 0 24
Saskatchewan!” Fallow/wheat 100 104
Fallow/wheat/wheat 100 106
Continuous wheat 100 106
Melfort, 30 0 52
Saskatchewan3¢ Fallow/wheat/wheat 100 100
Continuous wheat 100 100
Fallow/wheat/hay rotation 100 97
Queensland, 13 Cereals — conventional tillage 0 23 69
Australial4s Straw burned 100 101 106
Straw retained . 100 102 105
Cereals — no-till 4 »
Straw burned & 100 94 98
) Straw retained 100 112 113 \
L‘ : Eastern Kansas!# 8 0 252
Continuous soybean 100 95
Corn/soybean 100 101
Continuous corn 100 102
Purdue, IN16 12 0 67 200
Continuous corn 100 106 107
Lamberton, MN7? 19 0 45 90 180
Continuous corn . 100 104 103 105
Lexington, KY4 20 0 84 168 336
A Continuous corn — plow tillage 100 115 115 126
Continuous corn — no-till 100 105 106 120
Askov, Denmark® 78 0 35 70 105
Cereal/root crop rotation — loam 100 106 109 111
Cereal/root crop rotation — sand 100 111 121 —
Southern Sweden!” 15 0 50 100 150
Mixed cropping 100 107 108 111
Uppsala, Sweden?® 30 Cereal/root crops 0 80
Straw removed 100 118
Straw added 100 116
Sawdust added 100 115
As, Norway® 20 Cereals 0 34 68 136
' Straw added 100 98 101 103
Straw removed 100 101 104 103
(saker, Norway® 20 Cereals 0 34 68 136
Straw added 100 102 100 104

Straw removed : 100 100 99 107
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Table 6 (continued) Summary of Long-Term Field Experiments Showing Soil C Responses to
Differential Levels of N Fertilizer Application (N Levels are Shown in Bold Type)

N Levels (kg ha)

Site Years Treatment Soil C Change (% of Control)
As, Norway® 31 60 120
Cereals 100 102
Cereal + row crops 100 102
2 ley + 4 arable 100 108
4 ley + 2 arable 100 104
Halle/Saale, 80 0 40
Germany?'? Continuous rye 100 108
Gottingen, 81 0 30-50
Germany?° Mixed rotation 100 111
Riverside, CA22! 28 Citrus grove 0 310
Urea N 100 105
NH,-N 100 125
NO;-N _ 100 123
Rothamsted, U.K.22 120 Pasture (parkgrass plots) 0 48 96 144
Unlimed
NH, — fertilizer 100 100 138 153
NO,; — fertilizer 100 108 97 —
Limed
NH, — fertilizer 100 95 101 105
NO, — fertilizer 100 99 100 —
Note: Soil C levels represent the total change over the duration of the experiment, given as percent of the unfertilized
(or least fertilized) treatment. “
W

~250 g C/m2/yr added

1200

&E‘

5 9004
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S 600
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@ 300-]
Figure 12 Nitrogen addition effects on the net change o
in soil C over the duration of a 31-year experiment with £
constant (~250 g C m2 y) of straw or sawdust addi- 0 .
tion. Above-ground crop residues were removed from straw  straw+N  sawdust sawdust+N
the plots. N fertilized plots received rates equivalent to r .

C:N ratios 9.1 9.6, 9.9 10.2

80 kg N ha* y* as Ca(NOy),. i

V. CONCLUDING REMARKS

Agricultural practices and SOM dynamics are intimately linked and, as we have discussed, virtually all
facets of management impact the amount of C which can be maintained in soil. However, because the
amounts of C in soils are large and change comparatively slowly, the implications of a particular
management system on the soil may be apparent only after several years to decades. We are fortunate
that a number of far-sighted individuals initiated and subsequently maintained long-term field experi-
ments, providing us with a unique legacy of agricultural and ecological information.

The intelligent management of soil resources, including organic matter, is of critical importance, not
only for productivity and sustainability of the farmer’s field, but also for the health and sustainability
of our global environment. The practical knowledge as well as theoretical insights which have been
derived from long-term field experiments provide us with some essential tools to improve the sustain-
ability and environmental quality of agroecosystems.
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