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RESULTS FROM PRIOR FUNDING  
Ecology of Infectious Disease Award DEB-0091961, 2000-2006, Spatial & Temporal Dynamics 
of Prion Disease in Wildlife: Responses to Changing Land Use. $2,166,690 
Intellectual Merit: Hobbs, Miller, Williams (deceased), Hoeting, and Tavener received support to 
study dynamics of chronic wasting disease (CWD) in populations of mule deer, and, in particular, to 
identify effects of land-use on disease prevalence. We produced 13 refereed publications in core 
journals and one in review. We developed the first live animal diagnostic for CWD (Wolfe et al. 
2004).  We discovered that CWD can be transmitted from excreta (Miller et al. 2004) and that 
infectious residues persist in the environment for years (Miller et al. 2004, Miller et al. 2006). We 
provided the first evidence of a genetic basis for susceptibility (Jewell et al. 2005, Fox et al. 2006). 
We showed that prevalence is shaped by human land use (Farsnworth et al. 2005, 2006) and host 
demographics (Farnsworth et al. 2005, Miller and Conner 2005, Farnsworth et al. 2006). We revealed 
an exponential increase in prevalence within the male segment of deer populations within epidemic 
areas of Colorado (Miller and Conner 2005). We were the first to estimate the net reproductive rate 
of the disease, R0 (Miller et al. 2006).  We were the first to apply multi-model inference to the 
estimation of R0 in a model of infectious disease (Miller et. al. 2006). Although papers 
acknowledging this award and its supplement (below) have been recently published, they have 
nonetheless motivated 337 citations, demonstrating the high impact of our work. 
Broader Impacts: We trained four post-doctoral fellows, one Ph.D. student, two Master’s students, 
and two undergraduates. We presented findings to the Panel on Prions in the Nation’s Food Supply, 
Institute of Medicine, National Academy of Sciences. We testified to the Subcommittee on Forests 
and Forest Health and the Subcommittee on Fisheries Conservation, Wildlife, and Oceans of the 
Committee on Resources, United States House of Representatives. We served on the Yellowstone 
National Park Wildlife Health Working Group. We advised the US National Park Service, the 
Canadian Food Inspection Agency, the Canadian Cooperative Wildlife Health Centre, numerous state 
agencies, and non-governmental environmental groups. We gave interviews to NBC Evening News, 
the Wall Street Journal, the New York Times, the Denver Post, the Rocky Mountain News and other 
media. Our work was characterized by a close partnership with the Colorado Division of Wildlife 
and our findings have been directly incorporated into their routine management practices.  
Supplement to Ecology of Infectious Disease Award DEB-0091961, 2003-2004. $65,000. 
Applying novel statistical analyses to data collected during our investigations was crucial to several 
insights described above. Motivated by the need for such approaches, Hobbs and Hoeting proposed a 
workshop composed of statisticians and ecologists to communicate emerging statistical methods to 
the research community in ecology. The workshop, supported by a supplemental award to our 
original grant, produced a Special Feature in Ecological Applications including eight papers 
acknowledging support from DEB-0091961. See Hobbs et al. (2006) and accompanying papers.   

RESPSONSES TO PREVIOUS REVIEWS 
This is a resubmission of a renewal proposal that has received helpful, encouraging reviews. It 

was rated competitive in 2007 (1E, 3V, 1V/G, 1G) and highly competitive in 2008 (1E, 4V). The 
panel summary from 2008 expressed a single concern, that our sample size might not be adequate to 
estimate states and parameters in our model. In response, we have simulated data under plausible 
assumptions for process and observation uncertainty and used the simulated data to examine the 
sensitivity of our proposed sampling regime (see Adequacy of Sample Size, page 11).   

 

SIGNIFICANCE 
Chronic wasting disease (CWD) of the deer family (collectively known as “cervids”) is a 

transmissible spongiform encephalopathy, a member of a group of infectious diseases affecting 
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animals and people caused by an accumulation of a proteinase-resistant prion protein (PrP) in the 
brain of affected individuals. Similar diseases include scrapie in sheep and goats, bovine spongiform 
encephalopathy in cattle and Creutzfeldt-Jacob disease in humans, all of which cause neural 
degeneration and, inevitably, death (Prusiner 1999). 

When we received our Ecology of Infectious Disease award in August of 2000, the known 
distribution of CWD was limited to a single cluster of populations of mule deer (Odocoileus 
hemionus), white-tailed deer (O. virginianus) and elk (Cervus elaphus) arrayed along the eastern 
slope of the Front Range and the Medicine Bow Mountains in northeastern Colorado and 
Southeastern Wyoming (Miller et al. 2000). Today, the spatial distribution of CWD is far more 
extensive. As of December 2008, CWD has been found in free-ranging cervid populations in 13 
states and provinces in North America and as well as in over 80 captive herds. Discovery of an 
infection in South Korea exposes Asia to the disease (Kim et al. 2005) and discovery of CWD in 
moose (Alces alces) (Baeten et al. 2007) means that it could spread to boreal regions.   

It is well known that CWD can be transmitted freely among some cervid species (Williams 2005, 
Tamguney et al. 2006), but interspecific differences in susceptibility to infection by mule deer prions 
have not been studied comprehensively. Beyond species in the family Cervidae, however, the natural 
host range of the CWD prion appears limited, and there currently is no evidence that the disease can 
be transmitted naturally to people (Belay et al. 2004, Novakofski et al. 2005, Tamguney et al. 2006, 
Xie et al. 2006) or domestic livestock (Williams 2005), and thus the emergence of CWD does not 
appear to pose a particularly significant direct threat to health of humans or domestic animals.  

By contrast, CWD poses far more serious risks to human economies and to natural ecosystems of 
North America and, in the fullness of time, to the ecosystems of the world. A recent field study at 
Table Mesa in north central Colorado revealed that prion infection dramatically lowered mule deer 
survival and increased their vulnerability to predation; moreover, emergence of prion disease in that 
population coincided with a 45% decline in estimated mule deer abundance over about two decades 
(Miller et al. 2008). In light of these data, and because there are no clear biological mechanisms for 
affected cervid populations to resist or recover from prion disease (Williams 2005, Miller et al. 
2008), unchecked epidemics appear capable of substantially disrupting affected native ecosystems 
with far-reaching consequences. Members of the deer family play fundamentally important roles in 
ecosystem processes across the globe, linking large predators to food webs, influencing disturbance 
regimes, mediating nutrient cycling, and shaping the composition of landscapes (reviewed by Hobbs 
1996, 2006, Pastor et al. 2006). These species also provide basic subsistence to indigenous people 
throughout the Northern Hemisphere. Rural, recreation-based economies in North America could be 
severely harmed by the continued emergence of CWD (Bishop 2002, Seidl and Koontz 2004, Miller 
et al. 2008). Thus, the potential for spread of CWD represents a global threat to the integrity of 
ecosystems and to the welfare of people who depend on them.  

PREVIOUS FINDINGS MOTIVATING PROPOSED WORK 
Transmission 

Much progress has been made in understanding mechanisms of transmission of CWD. Unlike 
bovine spongiform encephalopathy but similar to scrapie, CWD is transmitted horizontally (Miller 
and Williams 2003), likely via oral exposure to saliva, blood (Mathiason et al. 2006) or to residual 
excreta or carcass remains (Miller et al. 2004). Oral infection via urine or feces cannot be ruled out 
(Miller et al. 2004, Mathiason et al. 2006). Evidence suggests that infectious materials can persist in 
the environment for years (Miller et al. 2004, Miller et al. 2006) and soil particles appear to represent 
a plausible environmental reservoir for prion infectivity (Pedersen et al. 2006, Schramm et al. 2006, 
Cooke and Shaw 2007). Recent, experimental findings show remarkable amplifying effects of clay 
soils on infectivity. Binding infectious prions to montmorillonite (clay) soils increased their 
infectious titer by a factor of 680 relative to an unbound agent (Johnson et al. 2007). Oral exposure to 
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clay-associated prions led to TSE development in experimental animals even at doses insufficient to 
cause clinical symptoms when prions were not bound to clay particles (Johnson et al. 2007). 
However, evidence for indirect, environmental transmission does not exclude a major role for 
transmission via direct contact between susceptible and infected individuals. The relative importance 
of these two routes has not been established. Models of disease dynamics in captive populations 
found substantial support in data for both direct and indirect transmission (Miller et al. 2006).  

Influence of genetics on CWD prevalence 
Prion proteins (PrP) are found in all mammals, and probably all vertebrates. A specific function 

of PrP has not yet been discovered, although PrP is highly conserved and under purifying selection 
in mammals (Wopfner et al. 1999, Seabury et al. 2004). We characterized the prion protein (PrP) 
gene in 1,482 free-ranging mule deer from Wyoming and Colorado (Jewell et al. 2005), finding 
dimorphisms at codons 20 (aspartate/glycine) and 225 [serine (S)/phenylalanine (F)]. Polymorphism 
at codon 225 correlated with CWD status: the odds that deer of the SS genotype were CWD-infected 
were 30 times greater (95% confidence interval = 4–213) than for SF deer. These results suggest that 
the SF genotype conveys resistance to CWD, a result that resembles findings on genetic controls on 
susceptibility in other cervids (Johnson et al. 2006). In laboratory studies (Fox et al. 2006) oral 
challenge of SF mule deer caused infection, but with slower progression to disease, showing that the 
genotype does not convey absolute resistance. The F allele varies in frequency from 0 to as high as 
11% in populations sampled in Colorado and Wyoming (Jewell et al. 2005), with higher frequencies 
in Colorado than in Wyoming. In Colorado, as many as 20% of deer have the SF genotype, based on 
hunter samples from northeastern Colorado (Jewell et al. 2005) and random sampling (N = 212) in 
Rocky Mountain National Park (M.K. Watry 2007, unpublished MS thesis, CSU).  

Modeling disease dynamics  
Simple, compartment models based on systems of differential equations explained trajectories in 

observations of CWD-induced mortality in captive populations (Miller et al. 2006), but our ability to 
portray dynamics of free-ranging populations infected with CWD remains rudimentary. Parameter 
estimation has been hampered by relatively brief time series of data on prevalence in infected 
populations and by the absence of studies of individually marked animals. Modeling efforts to date 
(Gross and Miller 2001) predicted local extinction of mule deer populations, but these results were 
criticized as being excessively reliant on untested assumptions about modes of transmission 
(Schauber and Woolf 2003).  Although we have gained substantial knowledge of the factors that 
influence prevalence (Farnsworth et al. 2005, Miller and Conner 2005, Farnsworth et al. 2006), 
controls on the probability of transmission remain unknown. It is clear for example that there are 
very important differences in prevalence among sexes and ages (Miller and Conner 2005, Farnsworth 
et al. 2006). Thus, future modeling efforts must be able to incorporate demographic heterogeneity in 
transmission. 

Our experience in trying to model dynamics of an emerging infectious disease is not unusual. 
Efforts to evaluate models of diseases with data, to estimate their parameters, and to assess 
uncertainties in model predictions1 have had the greatest success using long time series of 
observations (e.g., Bjornstad et al. 2002, Clark and Bjornstad 2004, Koelle and Pascual 2004, Morton 
and Finkenstadt 2005) or where broad scale, detailed case reporting was feasible over short time 
spans (e.g., Ferguson et al. 2001a, Ferguson et al. 2001b, Keeling et al. 2001, Lipsitch et al. 2003, 
Riley et al. 2003, Keeling 2005). In all of these instances, the underlying form of the process model 
was well established (or was assumed false with confidence) before parameters were estimated. In 
contrast, current approaches to assimilating data with models of disease processes have not been 

                                                 
1 We will refer to parameter estimation, model selection, and assessing uncertainty in model projections as data 
assimilation.  
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widely successful when the structure of the process model is uncertain, when the duration of data 
collection is relatively brief, and when disease incidence must be observed in nature rather than 
reported by people. Many infectious diseases, particularly emerging diseases in wildlife, zootonic 
and otherwise, are characterized by precisely these limitations. 

 Moreover, until recently (Clark and Bjornstad 2004, Morton and Finkenstadt 2005), multiple 
sources of stochasticity influencing disease dynamics were often lumped into a single “error” term, 
glossing over differences in uncertainties arising from process variance, observation error, and 
random effects created by differences among individuals. The failure to properly partition sources of 
stochasticity can lead to erroneous conclusions about population dynamics (De Valpine and Hastings 
2002, Calder et al. 2003, Clark and Bjornstad 2004) and can produce excessively optimistic 
confidence envelopes on model predictions (Clark and Bjornstad 2004).  

We identify three needs in a new approach to data-assimilation for models of emerging infectious 
diseases. The approach must 1) exploit multiple sources of data that may have been collected at 
different scales of time and space, 2) quantify key sources of uncertainty, including process variance, 
errors in observations, random effects among individuals, and uncertainty about underlying models 
of transmission, and 3) provide confidence envelopes on all quantities of interest that incorporate 
these multiple sources of uncertainty.  

PROPOSED WORK 
Aims 
We propose research to meet the following aims:  

Aim 1:  Provide a case example of a novel, general approach for assimilating data with models of 
emerging infectious diseases that meets the three needs outlined above.  

Aim 2: Evaluate support in data for competing models of transmission of CWD and estimate the 
basic reproductive rate of the disease. 

Aim 3: Reveal demographic, genetic, and environmental sources of heterogeneity in disease 
transmission. 

Aim 4:  Use the models developed under Aim 1 and 2 to evaluate the consequences of disease for the 
trajectories of populations infected with proteinase resistant prions. Examine potential for transient 
behaviors in population growth rates (), examine sensitivities of  to variation in model parameters, 
and evaluate opportunities for disease control, particularly the consequences of increases in 
frequency of disease resistant genotypes. 

Overview 
We will conduct a field study using multi-state, mark-capture-recapture methods to estimate 

survival probabilities ( )φ  and probabilities of infection (g) in populations of mule deer infected with 
CWD. These estimates will be used in three ways. First, they will allow estimation of transition 
matrix elements in a process model of disease dynamics. This model will be used to meet Aims 1 and 
2. In a separate analysis, the g will be estimated using a series of covariates to examine sources of 
individual variation in probability of transmission (Aim 3). This analysis will address how 
differences in genotype, relatedness, age, sex, local population density, and exposure to clay soils 
shape probabilities of survival and infection. Finally, we will use our understanding of these sources 
of variation in transmission probabilities and our process model to explore potential, future 
trajectories of the disease (Aim 4). 

The remainder of this proposal will be organized as follows. We begin by describing a statistical 
approach to integrating field data with process models of disease dynamics. Next, we sketch a field 
study designed to provide data to parameterize and evaluate these models and to examine sources of 
heterogeneity in disease transmission. We then outline mathematical analyses aimed at understanding 
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the consequences of variation in model parameters for dynamics of the disease and for the potential 
for control. Finally, we discuss potential problems that are likely to arise. We close the proposal by 
discussing the broader impacts of our work. 

 Process model 
Proposals like this one customarily place descriptions of experiments and sampling ahead of 

descriptions of modeling and analysis. We depart from that custom by describing our process model 
and model-data assimilation first, thereby providing a rationale and framework for the observations 
needed to estimate model parameters and to evaluate competing ideas about disease transmission. 
We then describe the details of those observations, returning later to describe how we will use the 
parameterized model to gain general insight about CWD and prion diseases. 

Stage structured, discrete time models of population dynamics provide widely used methods for 
representing and analyzing dynamics of populations (Caswell 2001), but these models have rarely 
been applied to infectious disease (but see Morton and Finkenstadt 2005, Oli et al. 2006). The 
historic absence of discrete time formulations from models of infectious disease is better attributed to 
culture than to mathematical necessity; Van Boven and Weissing (2004) provide a rationale for using 
discrete time formulations for disease models and offer a detailed treatment of the relationships 
between discrete and continuous forms. Using a model similar to the one used in Oli et al. (2006), we 
will represent a population of mule deer infected with chronic wasting disease using two sexes, two 
ages, and two disease states: 
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where Nt is a vector of numbers of individuals in six possible states characterized by age, sex, and 
disease status. The F’s are state specific fertilities,   is the sex ratio of offspring, the i ’s give 

survival probabilities for state i during time t to t + 1 and the gjk’s give the probability of transition 
from state k to state j. The values of the gik within a column sum to 1 because within any interval of 
time, each stage must reach one of two states: susceptible or infected. We will refer to these 
parameters collectively as the vectors F,.  It is important to note that while equation 1 might appear 
to be a purely linear formulation with time invariant parameters, we do not assume linear dynamics 
because the φ , and g  can be themselves be functions of the abundance of individuals in different 
states. So, for example, we might represent the probability of transmission from adult female 

infecteds to adult female suspectibles as  3 6

3,2 1 t tN N t
tg e     where  is the continuous time 

transmission rate (t-1) and t = 1 year.   
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Equation 1 represents the basic elements of our understanding of the disease, for example there is 
no vertical transmission (Miller and Williams 2003) and the disease is uniformly fatal (Williams 
2005). Aspects that are not understood will be treated as hypotheses and will be evaluated by 
selecting among competing models as described subsequently (see Evaluating competing models of 
transmission, below). To economize space, we have shown only six state variables here, but others 
could be added as needed to reflect additional structure in the population resulting, for example, from 
differences in genotype or location2.  Moreover, different functional forms can be used to describe 
the parameter vectors as described below (see below, Evaluating competing models of transmission).   

Model-data assimilation 
Parameter estimation 

Hierarchial Bayesian models (Wilke 
2003, Clark 2007, Cressie et al. 2008)  allow 
us to embed equation 1 in a composite 
likelihood that also includes a data model 
for capture-mark-recapture estimating φ  
and g. We can also incorporate historic, 
landscape level data on disease prevalence 
(supporting estimates of g), observations of 
sex and age structure (supporting estimates 
of F and φ ) and estimates of total 
population size into the model (Figure 1) 
(Buckland et al. 2007, Clark 2007).  It is 
possible to include prior information from 
lab and paddock studies on disease death 
rates. Here, we briefly outline how this 
assimilation of multiple data sources will be achieved. Our approach is novel because it is the first to 
combine data from multi-state mark recapture studies with time-series observations on population 
states to estimate parameters in a discrete time, stage-structured model of disease dynamics.  

Mark-capture-recapture methods provide a well-developed approach to estimating survival of 
organisms (reviewed by Sandercock 2006). These methods have recently been extended from the two 
state case (alive or dead) to >2 states, thereby providing a basis for parameter estimation for a rich 
variety of stage-structured models (reviewed by Clark et al. 2005). Because infection status can be 
viewed as a state and disease transmission as a transition between states, mark-recapture methods 
offer a novel way to estimate disease transmission rates (e.g., Faustino et al. 2004, Lachish et al. 
2007) and associated statistics like the net reproductive rate of the disease (Oli et al. 2006).  

Brief capture histories or low encounter rates in mark-recapture studies can reduce precision of 
estimates of parameters in multi-state models (Faustino et al. 2004). To enhance precision, it is 
critical to use all sources of data relevant to state transitions. This can be done as follows. The 
estimates of φ and g derived from mark-recapture are also included within the process model 

(equation 1, matrix M). The process model predicts observable population characteristics over time – 
total population size, the proportion of infected and susceptible animals, and the proportions of the 
population in different sex and age classes. Within the Bayesian framework, each of these predictions 
is influenced by process uncertainties because our model, by definition, is not a perfect 
representation of the processes it portrays. Data models link predictions to observations; each (Wilke 

                                                 
2 As described later, some of these structural differences can also be represented as random effects in a Bayesian 
hierarchy. 

Figure 1.  Schematic of relationships among data, models, 
and parameters in proposed studies of chronic wasting 
disease. Process models represent hypotheses on disease 
dynamics. Data models represent the probability that 
observations would be obtained conditional on being 
generated by the hypothesized process models. 
Hyperparameters represent variation among individuals. 
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2003, Clark 2007, Cressie et al. 2008) data model has its own observation error structure. The overall 
likelihoods are the product of the individual likelihoods, including the likelihoods of the model 
predictions given the population data and the likelihoods of the mark-recapture estimates of φ and g. 
The Bayesian approach to merging observation likelihoods from capture-recapture data and other 
population observations using a stage-structured process model is described by Brooks et al. (2004). 
The hierarchical structure of process variance and observation error is discussed in Clark (2007) and 
Cressie et al. (2008). 

Evaluating competing models of transmission 
Emerging infectious diseases will virtually always include some uncertainty about how the 

disease is transmitted, which is to say that the form of the underlying transmission model is 
uncertain. Failure to incorporate this uncertainty will produce unwarranted confidence in estimates of 
quantities of interest. In earlier work, we offered a new approach to incorporating model selection 
uncertainty in estimates of parameters of systems of differential equations representing transmission 
of infectious disease (Miller et al. 2006). We now describe how we will extend this general approach 
to stage structured models. 

The vector g, which is composed of probabilities of transition from susceptible to infectious 
stages, will form a basis for evaluating alternative models of disease transmission representing 
effects of demographics, nonlinear feedbacks, and environmental transmission. For example, a 
single, constant value for probability of transmission (i.e., all values of g specifying infection 
probability are the same) will represent the hypothesis that disease transmission does not depend on 
demographic composition or disease prevalence in the population. Effects of sex and / or age can be 
represented by allowing elements of g to differ according to stage. Non-linear feedbacks can be 
added by treating elements of g as a function of the predicted number of susceptibles and infected 
individuals in the population (representing density dependent transmission), or their predicted 
proportion in the population (representing frequency dependence). These feedbacks can also be given 
demographic structure — for example making nonlinear feedbacks functions of infected males, but 
not females, or young. A latent variable representing an environmental pool of infectious material 
can be included in the function for g as was done by Miller et al. (2006). In the most detailed models, 
non-linear feedbacks (density or frequency dependence) can be stage-specific to represent the 
interplay of demographic and disease states.  

Including alternative transmission terms within a matrix population model as a way to evaluate 
competing models of transmission and estimate model selection uncertainty has not been 
accomplished previously. We will use Bayesian methods, including Bayesian model averaging 
(Hoeting et al. 1999) to estimate parameter values incorporating model-selection uncertainty and, for 
the functional forms that are supported by the data, we will examine sensitivity of the model to 
variation in parameters as described in a later section (see Mathematical modeling). 

Explaining individual variation using covariates 
The multi-state mark recapture model we describe above can be extracted from the data-model 

hierarchy (Figure 1) so that it stands alone, without using historic, time series data. Doing so allows 
the use of covariates to explain variation among individuals. We will use covariates to address the 
following questions:  1) How do sex, age, and genotype modify the probability that an animal 
becomes infected? 2) Is transmission probability modified by membership in family groups, that is, 
does relatedness to infected individuals change transmission probability? 3) Does spatial variation in 
soil types change transmission probabilities?  Do animals that live in areas with predominantly clay 
soils run a greater risk of infection than animals that live in areas with other soil types? 

Random effects  
The traditional approach to modeling heterogeneity in stage structured models is to simply add 

new stages or strata to account for variation among individuals due, for example, to differences in 
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their spatial location. This approach rapidly expands the number of parameters that must be 
estimated. An alternative to simply adding more stages to matrix models is to assume that individuals 
are drawn randomly from a population that has its own defining parameters (i.e., hyperparameters). 
For example, to accommodate spatial heterogeneity, we could add stages to the model for 
subpopulations or groups. This can drastically increase the number of parameters while decreasing 
the number of observations used to estimate each parameter. Alternatively, hierarchical Bayes allows 
for this variability by adding a level to the hierarchy of data and process models. Instead of being 
fixed, prior parameter values are random, having priors of their own (hyperpriors) (Gelman et al. 
2004). We will explore the use of random effects to account for variation that is not included in the 
stages of our process model or in covariates. 

Estimating the net reproductive rate of the disease 
One advantage of the Bayesian approach is that estimates of uncertainty for all model parameters 

and quantities derived from them are a natural output of the modeling effort. We will estimate the net 
reproductive rate of the disease (R0 ) following the approach of  Oli (1996). In the absence of disease 
processes, the matrix M (equation 1), can be specified in terms of the transition matrix T (where 
element tij is the probability that an individual in stage j at the time t is alive and in stage i at time t + 
1), and the fertility matrix F that specifies recruitment (where the element f is the expected number of 
i-type recruits produced by an individual in stage j), i.e., M = T + F. In this case, we define the 
fundamental matrix N as N = (I – T)-1. We add the CWD disease process to the model by modifying 
the entries in the recruitment matrix F to represent the addition of new infections rather than the 
recruitment of susceptibles, allowing us to define the next generation matrix of the disease as R = 
FN. The dominant eigenvalue of R provides an estimate of R0. Bayesian estimates of the net 
reproductive rate are also available (e.g., Elderd et al. 2006). 

Statistical modeling in detail 
Thus far, we have described the statistical model in general terms; we now provide additional 

detail (Box 1). The proposed model integrates two sources of data, a longer time series of population-
level data collected by the Colorado Division of Wildlife (CDOW) on population size, age and sex 
ratios, and CWD prevalence, as well as individual capture history data collected using the proposed 
mark-recapture study. We broadly follow the approach of Brooks et al. (2004), which similarly 
combines animal abundance and demographic data, but we incorporate the disease model of Oli et al. 
(2006), the model for recapture data used in Clark et al. (2005), and the model selection approach of 
Miller et al. (2006). Many enhancements and simplifications to the proposed model are possible, 
such as a model that assumes that the stage structure parameters in the projection M matrix in 
equation (1) change over time. With multi-state capture-recapture models, special care must be taken 
to develop biologically meaningful models and to avoid parameter redundancy (Gimenez et al. 
2003). During the study period we will consider and develop a number of appropriate models.  

Field studies 
Study areas 

Data needed to parameterize and evaluate the process models described above will be obtained as 
follows. We will study three sub-populations in northeast Colorado, chosen from undeveloped, 
public land. There are several candidates for study identified as distinct units using cluster analysis 
based on radiotelemetry location data (Conner and Miller 2004). Each of these candidate sub-
populations offers 11 years of data on CWD prevalence from ongoing surveillance. CWD prevalence 
among males averages 15-35% and is increasing exponentially; female prevalence is < 10% and 
appears static (Miller and Conner 2005). Final choices of study areas will be based on pilot surveys 
of genetic composition, availability and duration of time series of data on sex and age composition 
and total census, and our ability to control access and hunting.   
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Box 1:  Statistical models  
Individual model:  Using the mark-recapture (MR) data, we assume that each animal is in one of six 
states (1) as well as an additional, seventh state, dead.  We observe i = 1…n marked individuals at 
t=1…T intervals.  Two state vectors provide the capture history of the ith individual, xi = (xit,….xiT)' is 
the observed state and zi = (zit,….ziT)' is the true state. For example, for animal 8 at time 2, x82=3 
denotes state 3 (adult female infected). If we fail to observe the animal at any given time, then its state 
is unknown at that time.  The Bayesian paradigm allows us to estimate the unknown states. We 
construct a function which relates the parameters in (1) to data, 
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where x and z denote the capture histories and true states for all animals, � and g are described in 
equation (1), and p denotes capture probabilities which are assumed to vary with disease state 
(Jennelle et al. 2007).  The likelihood in A is a problem-specific multi-state MR model likelihood 
equation (Newman and Lindley 2006). Component B is based on an appropriate function of the 
parameters that describes the transitions between states.  

Population and individual covariates can be used to improve model parameter estimates.  
Consider the probability of a transition from a susceptible adult female to an infected adult female 

(from state 2 at time t to state 3 at time t+1), g
32t

.  We could adopt the 

model  logit(g
32t

)  
0
 

1
w

1t
 , where w

1t
 is a measure of percent CWD positive for closely 

related deer observed at time t and α is a random effect accounting for multiple sites.  A simpler model 

allows for one transition parameter for all time periods, g
32

. Individual covariates can be used for any 

parameters that are not in the process model in equation (1) such as models for individual capture 
probabilities. ip ..  

Combining the individual and population models:  We have historical CDOW data which include 
estimates of total population size, sex and age ratios, and CWD prevalence. These are estimates for 
large areas, but provide information about the parameters of interest and can be used to enhance the 
MR model.  Considering only the population estimates here, the CDOW large-area population 
estimates tu are informative about the state vector Nt.  We can define a likelihood equation which 

links these data to the state vector as well as the parameters for survival and state transitions, 
( | , , )p u N φ g .  

Various approaches are available to combine the individual and population models.  If we assume 
that the data sources are independent, then the joint probability distribution is simply the product of 
the two likelihoods.  If needed, we can model the relationship between the data sources, by using the 
population-level data to calibrate the prior distributions for the parameters in the individual model or 
by using methods to combine multiple sources of evidence (Spiegelhatler and Best 2003). We can thus 
define the joint distribution between the observed data ,x u and covariates w . The posterior for all 
parameters is given by 

( , , , | , , ) ( , | , , , ) ( , , , ).p p pφ g,p N z x w u x,w u φ g,p N z φ g,p N z        
 Note that z contains both known and unknown components so the nomenclature here reflects that the 
Bayesian model can produce estimates for unobserved states in z. MCMC methods are used for 
estimation (Givens and Hoeting 2005)
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Mark-recapture data 
During November-December of year one, we will capture 80 animals from each study population 

(total captures = 210) using aerial net gunning from a helicopter, a procedure widely used for 
capturing large mammals in open habitats (Scotton and Pletscher 1998, Merrill and Mech 2003, 
Bleich et al. 2005, McClintock and White 2007). We will initiate searches from random starting 
points within each study area; thereafter deer will be captured as encountered. All captured animals 
will be tested for CWD using rectal mucosa biopsy (Wolfe et al. 2007), marked with a visible ear tag, 
fitted with a VHF radio collar equipped with a mortality sensor / transmitter. Tissue samples also will 
be collected for genetic analysis. During November-December of years 2-5, we will recapture 40-55 
animals from each subpopulation and add 15-20 new marks (total captures = 150). Aerial telemetry 
from a fixed wing aircraft will be used to direct the helicopter to marked animals to facilitate 
recapture, a technique that has been shown to cut time to recapture by half (Bleich et al. 2005).  

Location data   
Fifteen animals in each population, captured as described above, will also be fitted with global 

positioning system collars programmed to release from the animal approximately one year after 
deployment. These will be annually retrieved, GPS data will be downloaded, units will be 
refurbished with fresh batteries and redeployed on new animals. In so doing we will accumulate a 
sample of 225 individual-years of observation by the end of the study. The locations of all 
instrumented animals will be imported into spatial analysis software (ArcGIS 9, ESRI, Redlands, 
CA) and mapped to check for spatial consistency. Location data from GPS collars will be filtered to 
reduce bias due to land cover (Frair et al. 2004) and serial correlation (Swihart and Slade 1985). We 
will overlay GPS locations on the soils maps and integrate through time the habitats used by each 
animal. For example, we will characterize the clay content of the soil inhabited by a given animal 
each day. The mean of that measure through a year (and standard deviation) will be used to reflect an 
animal’s exposure to clay soils as a covariate in the analyses described above.  

Sex and age composition, census, and estimates of CWD prevalence   
Time series of estimates of total population density, age and sex composition, and CWD 

prevalence are available from the Colorado Division of Wildlife (CDOW) for the population from 
which our sub-populations are drawn. These data will continue to be accumulated during our studies. 

Genetic measurements   
We will examine the role of genetics in creating heterogeneity in transmission by incorporating 

genotypic information as covariates in the analysis described above. First, we will determine PrP 
genotypes of all captured deer, using a simple restriction fragment analysis (Jewell et al. 2005).  The 
PrP gene is variable in at least seven cervid species (Wopfner et al. 1999, Heaton et al. 2003, van 
Rheede et al. 2003, O’Rourke et al. 2004, Seabury et al. 2004, Happ et al. 2007), and variation in the 
PrP gene in mule deer relative to other cervids is well established (Brayton et al. 2004, Jewell et al. 
2005). Genotypic information (SS, SF, FF) will be used in population genetic analyses and as 
covariates in the analysis of sources of heterogeneity in transmission.  Second, all deer will be 
genotyped for a series of microsatellite markers and the control region of the mitochondrial DNA 
(mtDNA), to: 1) calculate relatedness among deer; and 2) assess movement of males relative to 
females. Here, we describe methods for genotyping PrP, microsatellites, and mtDNA. Genetic 
analyses will have high statistical power because hundreds of deer will be sampled. DNA will be 
extracted from tissue or blood using standard protocols; PCR protocols and scoring of alleles have 
been standardized (Jewell et al. 2005, Watry 2007). 

Microsatellite markers will be used to estimate relatedness of individuals within maternal groups. 
Tetranucleotide (CATC, TAGA) microsatellites, developed by the California Department of Fish and 
Game (GenBank AF102240–AF102260) are sufficiently diverse to allow accurate estimation of 
relatedness (Jones et al. 2000, 2002, Merideth et al. 2005, Watry 2007). Each deer will be genotyped 
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for at least ten markers, which will provide adequate power for both estimating relatedness between 
deer and determining population assignment (see below). The ten markers should yield >99% 
probability of identity, calculated as the probability of (not) sampling the same multilocus genotypes 
within maternal groups, given the total probability of sampling any possible genotype twice (Hedrick 
2004). Because of maternal inheritance, mtDNA analysis will allow us to further distinguish between 
gene flow by male dispersal (deduced from microsatellite markers), and genetic structure and 
stability of local female groups (in the cases where microsatellites show no differentiation, but 
mtDNA does). We will sample the mtDNA control region, which is highly variable in mammal 
populations (Polziehn and Strobeck 1998, GenBank U12865, AF016952). 
 We will test whether populations are mixed within and between social groups, to assess both the 
likelihood of transmission and gene flow of the F allele between populations. It is unlikely that mule 
deer populations are isolated into distinct clusters beyond local social groups: previous studies in 
Colorado indicated high gene flow among subpopulations (Scribner et al. 2001, Watry 2007). We 
will use Bayesian assignment techniques (e.g., program STRUCTURE, University of Chicago) to 
determine the proportion of migrants within each population (Pritchard et al. 2000, Roach et al. 2001, 
Manel et al. 2005, Waples and Gaggiotti 2006). These methods calculate probabilities that 
microsatellite genotypes match others found in the same site (low gene flow) or that every genotype 
is equally likely to be collected in all places (high gene flow).  Similarly, mtDNA variation will be 
analyzed in program STRUCTURE by coding each haplotype as a unique allele.   
 Finally, our most informative analysis will be within female groups, via estimates of relatedness 
among deer within locations to infer group membership, and thus the probability of contact between 
individuals (c.f. Root et al. 2004, Blanchong et al. 2007).  A recent analysis of deer in Rocky 
Mountain National Park, CO revealed that infection status was correlated with relatedness (Watry 
2007), suggesting that group membership predicts CWD transmission.  Relatedness between 
individual deer will be estimated using standard methods (Peakall and Smouse 2006).  Adding 
relatedness as a covariate to the model above will allow us to compare the relative influence of 
environmental characteristics like soil type with the effect of social structure. We are particularly 
interested in the interaction between these two sources of variation to address the question “Does the 
effect of relatedness depend on the environmental context where it occurs?”  

Adequacy of sample size 
To evaluate the adequacy of our proposed sampling regime, we simulated data under plausible 

assumptions for process and observation uncertainty and then used a fully Bayesian model to 
estimate the known, generating parameters. We simulated dynamics of a population of 1000 animals 
with infection introduced to the population in year 1 of a 25 year simulation.  We assumed that no 
data were taken until year 10 of the epidemic. We simulated the “true” process using equation 1 with 
each state subject to lognormally distributed process variance.  We used the process equation to 
generate four sources of data relevant to the parameters in the model as described above (Field 
Studies): five years of capture histories and three, 15 year time-series3 of observations of prevalence, 
population sex and age composition, and total census.  Observation errors on count data were 
assumed to be negative binomial with a standard deviation of 40.  Data models for prevalence were 
binomial and for sex and age data were multinomial. Bernouli models were used for mark-recapture 

data.  We modeled the probability of transmission as  3 6

, , 1 k t tN N t
t j kg e      where k is the 

continuous time transmission rate and 
,3 , 4t t

N N  is the number of infected animals.  We modeled 

transmission for males and females separately and consistent with our earlier findings, assumed that 
the transmission rate for males was 3.5 time higher than the rate for females. Juvenile recruitment 

                                                 
3 This assumes 10 years of legacy data and five years of new data. 
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was a logit function of total population size. We were able to accurately estimate states and 
parameters with reasonable precision (Table 1), but only when we combined all four sources of data.  

We also explored our ability to estimate 
covariates controlling transmission probabilities. 
Although power analyses are not typically 
considered under the Bayesian paradigm, an 
examination of power in the frequentist 
paradigm may be useful. If we assume 
independent observations over time and space, 
only one observation of CWD status per deer 
instead of the multiple observations planned for 
in the proposal, and one covariate, we can 
undertake a power analysis. Using methodology 
developed by Demidenko (2007), we examined 
power under a several reasonable scenarios and 
found high power to detect significant covariate 
effects for the proposed study. For example, 
under a simplistic one-covariate logistic 
regression model and based on models of CWD 
prevalence for our study area reported in Miller 
and Conner (Figure 2, 2005), we found the 
following. Assuming a sample of 300 deer with 
probability that the deer is a male equal to 0.3 
and probability of infected given male equal to 
0.12, the power to detect an odds ratio of 3.2 
due to sex with a significance level of 0.05 is 
0.90. Considering the relationship between genotype and CWD prevalence, we assume that the 
probability of deer in Colorado are SF equals 0.2 (Jewell et al. 2005, M.K. Watry 2007, unpublished 
MS thesis, CSU) and that probability of infected given SF equals 0.004 (Jewell et al. 2005).  It 
follows that the power to detect an odds ratio of 30 due to having the SS genotype (Jewell et al. 
2005) with a significance level of 0.05 is 100%.  Even if we observe the lower limit of the CI for the 
odds-ratio of 4 for the SS genotype /CWD positive that was reported in Jewell et al. (2005), we still 
have power of 0.99. 

Mathematical modeling 
The process model, statistical framework, and observations proposed above will allow us to 

evaluate competing representations of disease transmission and will estimate posterior distributions 
on all parameters of interest. The covariate analysis will allow us to estimate how survival and 
transmission probability are shaped by individual variation. Taken together, these results will form a 
basis for model projections that can be used to address several questions of interest. In this projection 
modeling, we can expand equation 1 to include more stages, for example, genotype as well as sex, 
age, and infections status. The proper expansion of our model will be guided by our studies of 
individual variation in survival and probability of infection. 

Questions specific to CWD that can be addressed with standard model projections and analysis 
include: 1) What is the long-term future of populations infected with CWD? 2) What is the 
probability that such populations will face local extinction? 3) Are resistant alleles likely to increase 
in frequency in infected populations? 4) How rapidly will this occur and what are the consequences 
for disease dynamics? 5) Are there optimal control strategies that exploit demographic differences in 
survival and probability of infection? Additionally, our model can expand understanding of prion 

Table 1. Estimates of states and parameters. 

Parameter or State 
Generating 
value 

Estimated 
mean 

95% 
Credible 
Interval 

Transmission rates    

Males, 1 .007 .008 .006, .009 

Females,  .002 .0017 .00028, .004 
Survival 
probabilities    

Juveniles .45 .47 .36, .59 

Susceptible females .90 .92 .88, .96 

Susceptible males .60 .60 .51, .68 

Infecteds .50 .50 .37, .61 

Logit parameters for 
density dependence    

Intercept 3.0 2.79 2.0, 3.6 

Slope -.008 -.0076 -.009, -.004 
States during year 
25    
Total population 
size NA 253 168, 364 

Juveniles NA 83 55, 124 

Susceptible females NA 116 72, 173 

Infected females NA 10 5, 17 

Susceptible males NA 30 19, 44 

Infected males NA 11 6, 22 
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diseases in general by focusing on the implications of environmental transmission, which appears to 
be likely for other diseases, notably scrapie (Brown and Gajdusek 1991).  

To this point, we have focused on projecting equilibrium behavior of the disease, which coupled 
with analysis of stability properties, has become conventional in mathematical modeling of infectious 
diseases. We also propose to break new ground by developing mathematical approaches that have not 
been applied to disease systems. Traditionally, mathematicians and ecologists have studied 
populations by analyzing their equilibria. That is, they have examined the long term (asymptotic) 
behavior of continuous or discrete time models, and by applying bifurcation theoretic ideas, have 
investigated how this asymptotic behavior changes qualitatively as the parameters in their models 
vary. This approach is undoubtedly valuable and has led to important insights. However, it can 
become cumbersome to determine bifurcation behavior when there are large numbers of parameters. 
Because this approach is based on eigenvalues, it provides no information regarding transient 
behavior.  

Recently there has been increased interest in the short-term (transient) behavior of population 
models (see e.g., Hastings 2001, 2004, Wysham and Hastings 2008) because initial, transient 
dynamics can have important consequences for population management. If a manager is attempting 
to accomplish a certain goal within decades, it is important for him or her to take into account short-
term phenomena that may not be apparent in the long term (asymptotic) analysis. In this case, the 
bifurcation theoretic approach may not be the correct paradigm for management decisions. We will 
develop mathematical approaches to the study of transient behavior in specific disease systems, 
beginning with classical differential equation models that we used earlier (Miller et al. 2006), and 
then extend the approach to discrete time models of the type we describe here. We describe our 
approach to linear discrete time systems in Box 2. As an example of the value of this approach, the 
study of transient behavior under non-equilibrium conditions will allow us to examine the dynamics 
of spread of rare resistance alleles into mostly susceptible populations, including transient 
amplification of alleles early in the process.  

BROADER IMPACTS 

Our project has an opportunity to offer exemplary broader impacts. This opportunity arises 
because we will study a charismatic species infected with an unusual agent of disease that has a 
highly publicized analogue in humans. People care about the species we will study It is actively 
managed throughout the region. The project is rich in science and mathematics that align well with 
K-12 state science and mathematics content standards. Thus, we are unusually well positioned to 
attract broad interest from the general public, from K-12 educators, and from decisions makers.  
Graduate education: We will train four graduate students, two in ecology, one in mathematics, and 
one in statistics.  In additional to traditional, disciplinary training, we will strive to assure that our 
students are well prepared to contribute to interdisciplinary projects and to couple research with 
broader impacts.  All of the PI’s on this project have extensive interdisciplinary experience, and 
Hobbs, Hoeting, Tavener, and Antolin were leaders of a recently completed, highly successful 
Integrated Graduate Education and Research Traineeship, the Program in Interdisciplinary 
Mathematics, Ecology, and Statistics (http://www.primes.colostate.edu/).  We will apply lessons 
learned from this traineeship to our mentoring in this project.  We will hold semi-weekly meetings of 
the PI’s and students. Subsets of PI’s will be members of the graduate committee of all of the 
students. We will encourage joint publication and dissertation chapters. We will require students to 
take coursework outside of their core disciplines to assure their ability to communicate across 
disciplines and to share disciplinary tools.  In addition to their academic and research training, 
graduate students will participate in all aspects of the broader impacts, described below. 
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Box 2. Modeling transient behavior: Instead of using bifurcation techniques to partition parameter 
space into regions with qualitatively similar asymptotic behavior we wish to understand the transient 
behavior and the robustness of that transient behavior with respect to the parameters in the model. 

Given the parametrized transition matrix 1( ) n nR M


we consider the map, 

 1 1 0 0( ) ,, 0, , 1,t tx x t T x      M
   

 (1) 

where we treat the initial conditions 0
nR 


as a set of parameters as well the vector. The stability 

analysis suggested by Caswell (2007) differentiates (1) and evolves the matrix of partial derivatives  

 1 , 1,..., .t t
t

k k k

dx d dx
x k p

d d d  
   

M
M

 


 (2) 

We may well be interested in some linear functional of the solution (such as the fraction of the 
population expressing a resistant allele), which we may write as 

 
0

( ) ,
T

t t
t

q x 


  
  

. (3) 

Sensitivities of such a quantity of interest with respect to the parameters may then be computed as 

 
0

, .
T

t
t

tk k

dxdq

d d


 
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


 (4) 

Alternatively extending ideas of a posteriori error analysis from differential equations, where they have 
been used with considerable effect, to iterated maps, we solve an adjoint problem and compute a linear 
functional of the solution as the inner product of the adjoint solution and the initial conditions (Buzby et 
al. 2007). The analysis for maps has been performed by W. Newton in his recent M.S. thesis, Newton 

(2007). We solve the adjoint problem:  1 1, , ,1, ,t t t T Tt T         M
   •   

and then compute the quantity of interest as: 0 0( ) , ,q     
  

 

and sensitivities to parameters as:  1 , 1,...,t t
t

k k k

dx d dx
x k p

d d d  
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M
M

 


  (5) 

A simple calculation shows the differences of efficiency between two approaches. By observing that we 
may write 

 1 0
0

0 1

, , 1,..., ,
T t

t j j j
t

t jk k k

dxdq d
k p

d d d
 

  
 

 

 
   

 
  M

M M M


 (6) 

we see that the approach proposed by Caswell requires  3O Tn  operations compared to 

 2O Tn operations for the adjoint based approach, where n is the number of unknowns. This is not an 

issue for single realizations of small systems, but may become so for larger systems (such as those 
arising when spatial models are considered and the number of classes increases dramatically), or where 
the parameters are provided in distributional quantities and the corresponding distributions of the linear 
functionals and their sensitivities are required. Equation (3) is particularly efficient for changes in initial 
conditions. We therefore suggest that this approach is superior as a general tool. Our methods can be 

extended to include nonlinear systems 1( , , )x tM
 

, for example, by changing the forms of transmission 

to include density-dependence or frequency dependence.  However, just as in the differential equation 
context, these nonlinearities gives rise to implementation problems associated with storage of the 
solution and the matrix. There are of course considerably more complicated stability issues connected 
with nonlinear models (see e.g., Cushing 1998, Kot 2001). 
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K-12 and teacher education: Increasing teacher competency and student content knowledge is a 
critical step towards improving environmental literacy.  We believe that tradition coursework and  
workshops complemented by immersion into research with scientists and their students is an 
effective tool to achieve these goals.  Each year, two high school teachers will be invited to work on 
the project, provided a stipend of up to $7,000, and offered graduate credit through existing 
professional development programs supported by the Natural Resource Ecology Laboratory (NREL) 
at CSU.  Specific examples that embrace these ideals and practice include the NSF and CDE funded 
Mathematics and Science Partnership programs, and the NSF funded GK-12 and Teacher 
Professional Continuum.  Teachers will be directly involved in some aspect of the field, laboratory, 
and modeling portions of the project. Following the NSF GK-12 model, each graduate student will 
work directly with a teacher to develop and deliver materials based on their research and experiences 
aligned with the state content standards. Additionally, teachers will meet monthly with teachers, 
scientists, and graduate students working on other research projects as part of the broader 
professional development activities coordinated by the NREL. We have participated in several 
planning meetings with teachers, district science coordinators, and administrators from our two 
largest school districts - Poudre School District and Greeley-Evans School District 6 - to shape and 
coordinate our plan (letters in supplementary documents). 

Citizen education: Hobbs has a 30 year history of research and outreach with Rocky Mountain 
National Park. The park is visited annually by more that 3 million people, presenting a rich 
opportunity for education of citizens in a location close to Colorado State University. Hobbs will lead 
a collaboration with Park staff, graduate students, and participating high school teachers to develop 
interpretive programs on CWD and disease ecology. There is a natural entry point for this citizen 
education because many of the native ungulates are marked as part of other, ongoing CWD research.  
These marks stimulate curiosity by park visitors creating natural teaching moments for interpretive 
staff.  See letter of participation by park staff in supplementary documents. 

Outreach to management.  Miller is the Head of the Wildlife Health program for the Colorado 
Division of Wildlife and has frequent and direct opportunity to influence management and policy 
decisions in Colorado. He will continue to serve as the liaison between the project and wildlife 
managers in the state. We will expand the reach of our influence by convening two regional 
workshops with managers and stakeholders. In the first workshop, to be held in year two of the study, 
we will seek advice from participants on key questions that need to be resolved to support wise 
management of the disease, particularly questions that could be addressed with our parameterized 
model.  We will annually update the workshop participants on project findings using an 
electronically delivered report prepared specifically for this audience. In year 5 of the study, we will 
report back to this community in a second workshop. The Colorado Division of Wildlife will co-
sponsor these workshops.  See participation letter in supplementary documents. 

Outreach to researchers: Our analytical approach is novel because we combine well established 
methods of population modeling and parameter estimation in a framework that has been rarely 
applied to the study of infectious disease. Hobbs and Hoeting will teach our approach in the annual 
NSF-funded (PI - Antolin) Ecology of Infectious Diseases Workshops, which are geared toward 
upper-level graduate students and post-docs, with a focus on statistical and analytical modeling of 
disease dynamics.  They will also hold a special workshop on data assimilation for disease models at 
the annual meeting of the Ecological Society of America.  They will write a synthetic paper on the 
approach for a journal targeting a broad range of biological researchers (e.g., Hoeting et al. 1999, 
Hobbs and Hilborn 2006, Hoeting et al. 2006, Hoeting 2008).   


