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Abstract. Observed spatial patterns in natural systems may result from processes acting
across multiple spatial and temporal scales. Although spatially explicit data on processes that
generate ecological patterns, such as the distribution of disease over a landscape, are
frequently unavailable, information about the scales over which processes operate can be used
to understand the link between pattern and process. Our goal was to identify scales of mule
deer (Odocoileus hemionus) movement and mixing that exerted the greatest influence on the
spatial pattern of chronic wasting disease (CWD) in northcentral Colorado, USA. We
hypothesized that three scales of mixing (individual, winter subpopulation, or summer
subpopulation) might control spatial variation in disease prevalence. We developed a fully
Bayesian hierarchical model to compare the strength of evidence for each mixing scale. We
found strong evidence that the finest mixing scale corresponded best to the spatial distribution
of CWD infection. There was also evidence that land ownership and habitat use play a role in
exacerbating the disease, along with the known effects of sex and age. Our analysis
demonstrates how information on the scales of spatial processes that generate observed
patterns can be used to gain insight when process data are sparse or unavailable.

Key words: Bayesian analysis; chronic wasting disease; disease ecology; hierarchical models; intrinsic
Gaussian conditional autoregressive (ICAR) model; mule deer; Odocoileus hemionus; prion disease; spatial
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INTRODUCTION

Linking spatial patterns to the processes that generate
them offers a fundamental challenge in contemporary
ecology (Levin 1992, Sarnelle 1994, Pascual and Levin
1999). This problem is particularly difficult to solve
when processes operate over large spatial and temporal
scales. When this is the case, it is possible that emergent
patterns reflect the outcome of processes operating at
more than one nested scale. Hierarchical models provide
a natural, unified framework for comparing spatial and
temporal processes that operate across a range of scales.
Here we use hierarchical modeling to investigate the
spatial distribution of an emerging infectious disease of
wildlife in North America.
Chronic wasting disease (CWD) (Williams and Young

1980) of North American cervids is the only prion
disease known to occur in free-ranging populations
(Williams and Miller 2002). The largest known outbreak
occurs in a contiguous ;80 000-km2 area of northeast-
ern Colorado, southeastern Wyoming, and western
Nebraska, USA (Williams and Young 1992, Miller et

al. 2000, Williams and Miller 2002). Chronic wasting
disease may have been present in free-ranging deer
within this area since the 1960s or earlier (Miller et al.
2000). Although the infectious agent causing CWD is
contagious in its natural setting (Williams and Young
1992, Miller and Williams 2003), relatively little is
known about mechanisms of transmission (Williams and
Miller 2002). Possible routes of transmission include
animal–animal and animal–environment–animal path-
ways (Miller and Williams 2003, Miller et al. 2004).
Recent discoveries of CWD foci distant to this 80 000-
km2 endemic area motivated our efforts to understand
spatial and temporal dynamics. This understanding is
needed to inform management strategies for controlling
CWD in affected populations and prevent or slow its
spread among unaffected populations.
The distribution of CWD in northeastern Colorado

appears heterogeneous at both small (!50 km2; Wolfe et
al. 2002) and large (.38 000 km2; Miller et al. 2000)
scales (Fig. 1). Small-scale heterogeneity may result from
highly localized contact processes, such as interactions
among individuals within matrilineal groups, which are
tightly clustered and patchily distributed across their
winter home range (Conner and Miller 2004, Miller and
Conner 2005). Recent investigations suggest that once
the infectious agent is shed into the environment it may
persist for several years outside the host (Miller et al.
2004). Consequently, large quantities of agent deposited
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in a relatively small geographic area could result in ‘‘hot
spots’’ of infection scattered across natural landscapes.
The process of mule deer movement in north-central

Colorado can be divided into three categories, reflecting
the geographic scales of seasonally dependent movement
patterns (Conner and Miller 2004). At the largest scale,
the summer subpopulation home range, mule deer home
range sizes average ;310 km2 and exhibit greater
overlap (;22%) than at any other time of year (Conner
and Miller 2004). At the winter subpopulation home
range scale, deer live in groups with a mean home range
size of ;80 km2 and exhibit little overlap (,1%) among
wintering groups (Conner and Miller 2004). Finally,
individual mule deer have a characteristic home range
size that averages ;9 km2 during the winter when deer
are more sedentary (Conner and Miller 2004).
High fidelity to seasonal-use areas and temporally

consistent movement patterns of subpopulations (Con-
ner and Miller 2004), and presumably the resulting
home range scales, suggest the importance of local,

small-scale contact processes in structuring CWD spatial
heterogeneity. At the same time, large-scale movement
patterns, such as those that occur when subpopulations
expand their home range between winter and summer
locations, could result in a greater number of contacts
among deer that do not interact during the winter
months. If large-scale movements were primarily re-
sponsible for the spatial structure of CWD, then the
distribution of infected deer should exhibit greater
homogeneity at large geographic scales than would be
expected if disease transmission occurs predominately at
local winter subpopulation or individual movement
scales. Heterogeneity in CWD prevalence also may
result from different times since disease introduction
into the various subpopulations (Miller et al. 2000);
unfortunately, time since introduction will remain
unknown for most or all infected subpopulations.

Studies examining the manner in which ecological
inference changes with analysis scale have been used to
understand how avian species richness changes with the
scale of observation (Rahbek and Graves 2001), how the
risk of disease varies across analysis scales (Jarup et al.
2002, Smith et al. 2003), and how quantitative measures
of invasion and extinction of native fish species differ
across scales (Olden and Poff 2004). Similarly, to
understand the potential relative contribution of differ-
ent scales of deer movement to the structure of observed
spatial heterogeneity of CWD, we specified a set of
candidate models reflecting the different scales, combi-
nations of predictor variables, and spatial dependencies
affecting the probability of CWD infection in individ-
uals. We then used contemporary model selection
techniques to identify those scales and predictors
corresponding best to the observed spatial structure of
CWD infection across the landscape. In addition to
gaining insights into the spatial epidemiology of CWD,
we demonstrate how hierarchical modeling can be used
to understand the relative contribution of hypothesized
generating processes to observed patterns of disease
prevalence.

Although some studies of natural populations have
examined correlations between the spatial distribution
of disease and environmental variables (Van Buskirk
and Ostfeld 1998, Giraudoux et al. 2003) and others
have proposed biological explanations for the spatial
patterns they observe (Jolles et al. 2002, Aylor 2003), few
if any have identified the scales over which population-
level processes act to shape the spatial distribution of
disease in wildlife populations. Hierarchical models
provide a natural way to address this problem.

METHODS

Study area

Our study area included 6500 km2 in north-central
Colorado (Fig. 1) where CWD is endemic in free-
ranging cervids (Miller et al. 2000). Elevation ranged
from 1500 to 3500 m, rising from east to west. The
northeastern quarter of the study area, north of Fort

FIG. 1. Study site in north-central Colorado, USA, overlaid
with with the spatial distribution of chronic wasting disease
(CWD) data and the 540 9-km2 grid cells used in modeling
individual-level infection probability at the finest analysis scale.
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Collins, consisted of rolling foothills and high prairie
where livestock grazing was the main land use.
Vegetation was primarily sagebrush-steppe habitat with
big sagebrush (Artemesia tridentata), antelope bitter-
brush (Purshia tridentata), mountain mahogany (Cerco-
carpus montanus), and mixed grasses. The southeastern
quarter of the study area, from Fort Collins south,
consisted of urban centers separated by rural areas with
numerous small ranches, agricultural fields, natural
areas, and more scattered suburban areas. Vegetation
communities in the western half of the study area
followed the east-west elevation gradient. Lower eleva-
tions were mostly dense mountain mahogany inter-
spersed with grassland openings and small patches of
ponderosa pine (Pinus ponderosa) that transitioned to
mountain shrub habitat with a primarily mixed-conifer
overstory at higher elevations. The highest elevations
were mainly alpine tundra habitat.

Data

The Colorado Division of Wildlife (CDOW) provided
georeferenced data for 3855 mule deer tested for CWD
infection between 1997 and 2003 within the ;6500 km2

study area. All samples were geo-referenced using either
a global positioning system unit or by identifying sample
source locations on standardized maps. Sampling
methods included deer that were killed by hunters,
culled by wildlife managers, or captured and tonsil
biopsied; survey and diagnostic methods have been
described in detail elsewhere (Miller et al. 2000, Miller
and Williams 2002, Wolfe et al. 2002, Hibler et al. 2003).
Sampled deer were classified as CWD positive or
negative based on immunohistochemistry of retropha-
ryngeal lymph node or tonsil tissue (Miller and Williams
2002). The CDOW established a grid of 9-km2 cells for
identifying where individual deer were sampled (Fig. 1;
CDOW, unpublished data). For the current analysis, we
partitioned the study area into three grids. Each grid had
a resolution representing one of the scales of mule deer
movement: 9 km2, 81 km2, and 324 km2 overlaid on the
map of deer samples. The 9-km2 grid, being 3 km on a
side, was the sampling grid established by the CDOW,
with the two coarser scale grids resulting from combin-
ing multiple 9-km2 grid cells. Beginning with the
northwestern-most 9-km2 cell, we used a moving
window to combine neighboring 9-km2 cells until we
had achieved a new grid cell with a resolution equal to
the next coarsest scale of deer movement. This process
was iterated across the entire map at both of the coarser
movement scales. For example, combining a 33 3 block
of 9-km2 cells resulted in a new cell having an area equal
to 81 km2 (i.e., 9 km on a side). Constructing the grids in
this manner resulted in all three grids being aligned with
the 9-km2 sampling grid established by the CDOW.
Finally, because CWD prevalence remained relatively
constant within the study area between 1996 and 2003
(Miller et al. 2000, Miller and Conner 2005), we
aggregated the data across all years.

Data on locations and sex and age class (juvenile or
adult), which are known to influence infection proba-
bility (Miller and Conner 2005), were recorded for each
deer. Adult deer were classified as being two years of age
or older. In addition to these individual-level demo-
graphic (Demo) covariate effects, three environmental
(Env) covariates were calculated using a geographic
information system containing data grids representing
land ownership and vegetation patterns across the study
area at a 90-m resolution. The covariate values were
simple measures of proportions and landscape config-
uration, as described below, calculated for each of the
three movement scales used in the model. Each environ-
mental covariate was assumed to exert the same
influence on all individuals sampled from the same grid
cell. Thus, these covariates were scaled to the map
resolution considered in each model.
There is evidence of anthropogenic influence on CWD

prevalence in mule deer (Wolfe et al. 2002, Farnsworth
et al. 2005); consequently, we considered an environ-
mental covariate, %PRIV, that represented the percent-
age of private land in a grid cell. Because the
configuration of private land may be important, we
used a second environmental covariate, DISP, which
measured the degree of isolation of private land within a
grid cell as an index of the connectivity of private land
(McGarigal and Marks 1995) across the entire study
area. A final environmental covariate, %HAB, measur-
ing the percentage of low-elevation grassland habitat in
each grid cell, was used to represent the amount of
wintering habitat to capture the potential influence of
deer winter range concentration on CWD prevalence. It
is unlikely that any of the values of the covariates
changed in a manner that would substantially alter the
results during the time period covered by our study.

Hierarchical model of CWD infection

Two aspects of the data made it difficult to relate
movement scales to CWD infection probability. First,
we had home range size estimates derived from some
deer living within the study area (Conner and Miller
2004). However, we did not have spatially explicit home
range data for the deer used in our study. Although data
on movement patterns were unavailable across much of
the area, we wanted to shed light on potential trans-
mission scales. Second, economic and logistic con-
straints, in conjunction with the relatively long clinical
course and low prevalence of the disease (Miller et al.
2000), made it impossible to follow individual deer as
they moved across the landscape prior to being sampled.
We addressed these challenges by partitioning the study
region into aerial units (i.e., grid cells) reflecting the
scales of seasonally dependent mule deer movement
patterns. This specification allowed us to compare
different movement scales in the face of limited
information on the spatial structure of this process
across our study area. The hierarchical structure
accommodated uncertainties in the point-based CWD
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data by treating all individuals sampled from within the
same grid cell as having an identical exposure risk to the
infectious agent after adjusting for individual-level sex
and age effects.
We consider a generalized linear model for disease

presence/absence. For each individual deer, we model
the probability of being CWD-positive as a function of
the covariates and two random effect terms, which
account for any unobserved covariates as well as the
spatial pattern in the probability of disease presence.
This generalized linear model can be described in

three stages: the data model, or likelihood, linking the
data to the model parameters; the process model relating
the covariates and random effects to the parameters; and
the prior distributions for all model parameters (Wikle
2003). Our interest focused on the posterior distribution,
the distribution of the process and parameters after
being informed by the data. For many ecological
problems, the high dimensionality of the model can
prohibit the use of standard methods. However, Markov
Chain Monte Carlo (MCMC; Geman and Geman 1984,
Gelfand and Smith 1990, Gilks et al. 1998) techniques
allowed us to estimate the posterior distributions of
interest.

Data model

The data model relates the known infection status for
each deer to the probability of infection. Let Yij be the
known infection status for deer i ¼ 1, . . . , nj in cell j ¼
1, . . . , k. We assume that infection status is Bernoulli
distributed with parameter pij:

Yijjpij ;BernoulliðpijÞ ð1Þ

where pij is the probability of infection for individual i in
cell j. All observations are assumed to be conditionally
independent given this parameter.

Process model

The process component of the model relates the
probability of infection for each deer, pij, to the
individual and environmental covariates. We include
two random effect terms to account for variability that is
not accounted for by the covariates. To constrain the
Bernoulli-distributed infection probability to the range
0–1, we use a standard logit transform. Thus we model
the probability that an individual is infected as

logitðpijÞ ¼ l þ xTijbþ cj þ dj ð2Þ

where l is the background infection rate common to all
deer, b is an m 3 1 vector of regression coefficients
corresponding to the xTij , the transpose of the m 3 1
vector of individual covariates for the ith deer and the
scale-dependent environmental covariates associated
with the jth grid cell; cj is the scale-dependent spatial
random effect term for the jth grid cell; and dj is the
independent random effect term associated with the jth
grid cell. The independent random effects vary with the

scale of analysis, but exhibit no spatial dependency. The
random effect terms are described further below.

Prior and posterior distributions

Because our analysis is fully Bayesian, we specify
prior distributions for all model parameters in the
hierarchy. The spatial component, modeled by cj, is a
key parameter of interest because it models the latent, or
unobserved, contact process among mule deer resulting
in the local structure of CWD. Recall that cj is the extra
variation not accounted for by the covariates or
unstructured heterogeneity in grid cell j. We specify
the spatially structured variation in infection probabil-
ity, cj, via an intrinsic Gaussian conditional autoregres-
sive (ICAR) model (Besag et al. 1991). For a grid cell j in
our problem, the ICAR model states that cj is related to
the c terms for the neighboring grid cells; and, given the
c terms for the neighboring grid cells, each grid cell is
independent of all other grid cells outside the local
neighborhood. Specifically, let the set of neighbors of
cell j be denoted by jþ. Then, for each grid cell j, we
assume the following conditional relationship:

cjjcjþ ; Normal
1

njþ

X

i in jþ
ci;

r2
c

njþ

 !

ð3Þ

where njþ is the number of neighbors of grid cell j and r2
c

is the variance for all grid cells. Thus, the conditional
mean of cj is simply the average value of its neighbors
cjþ, with conditional variance r2

c/njþ inversely propor-
tional to the number of neighbors. In the conditional
mean in Eq. 3, the neighboring grid cells are equally
weighted so that all neighbors of cell j influence it
equally. Spatial variation in our model is limited to cells
sharing a border; however there are no a priori
restrictions on specifying the neighborhood structure
or cell weights. We use second-order neighborhoods
consisting of the eight grid cells surrounding the grid cell
in question. Thus, grid cells either sharing a border or
immediately diagonal to the focal cell are considered in
modeling spatial dependency. We chose a second-order
neighborhood instead of something larger because we
wish to maintain a sharp distinction between local
dependency and global unstructured heterogeneity,
which becomes increasingly blurred as the local neigh-
borhood is extended.

The unstructured heterogeneity term, dj, corresponds
to a latent process operating independently in each grid
cell at the chosen scale (e.g., home range scale). We let dj
; i.i.d. n(0, r2

dI) for j ¼ 1, . . . , J where I is an nj 3 nj
indicator matrix. This component models the overall,
unstructured heterogeneity in the data by assuming no
relationship among neighboring grid cells, but with a
variance that is common to all grid cells.

The following distributions apply to the remaining
model parameters. For the baseline disease risk, l is
assumed to follow an improper (flat) prior on the whole
real line. This prior distribution, along with a sum-to-
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zero constraint placed on the spatial random effects, is
necessary to assure identifiability because our model
contains ICAR random effects (Besag and Kooperberg
1995). These restrictions result from defining the spatial
random effect component conditionally rather than
jointly. For the standardized covariates we assume b
;n(0, r2

bI). We specify uniform priors for the variance
parameters, r2

b, associated with the fixed effects compo-
nents because recent investigations suggest that the
introduction of prior information using the uniform
distribution may be preferable to the more traditionally
used gamma distribution (Gelman et al. 2004) when the
goal is to provide a conjugate prior that contains little or
no information to influence the posterior distribution of
model parameters. Based on preliminary modeling using
increasingly diffuse hyperparameter distributions we
determined that a noninformative hyperparameter dis-
tribution for the variance parameters associated with the
fixed effects could be specified as r2

b ; Uniform(0, 100),
which was the prior distribution used in all subsequent
models. In models containing both spatial and non-
spatial random effects, prior distributions for the
variances should be specified to allow for equal
weighting of prior information, termed a ‘‘fair’’ prior
(Carlin and Perez 2000, Banerjee et al. 2004). The idea
behind fair-prior specification is that the prior distribu-
tion for the spatial random effect should be para-
meterized so that the spatial and nonspatial random
effects are equally likely a priori. Bernardinelli et al.
(1995) note that the prior marginal standard deviation
of the cj parameters is approximately equal to the prior
conditional standard deviation, rc, divided by 0.7. Thus
a scale that delivers

SDðdjÞ ¼
1

rd
’

1

0:7mrc
’ SDðcjÞ ð4Þ

where m is the mean number of neighbors, may offer a
reasonably ‘‘fair’’ specification (Banerjee et al. 2004).
The fair priors differ for each analysis scale due to
variations in m. The gamma-distributed fair priors for
r2
c and r2

d, respectively, are G(1.0, 1.0) G(10.37, 3.22)
for the 9-km2 scale, G(1.0, 1.0), G(9.77, 3.13) for the 81-
km2 scale, and G(1.0, 1.0), G(7.77, 2.79) for the 324-km2

scale of analysis.
Because the conditional posterior distributions for the

random effect parameters are free of the data Y, they
are Bayesianly unidentified in the convolution model
(Banerjee et al. 2004); however, this does not preclude
learning about the behavior of the random effects
parameters (i.e., prior to posterior movement). For
example, we consider a quantity, k¼ r2

c/(r
2
c þ r2

d), that
measures the proportional contribution from the spatial
random effect component of variance to the overall
variance due to the random effects. This parameter
allows us to understand the relative contributions of
spatially structured and unstructured variation in
models containing both.

Finally, the joint posterior distribution of all model
parameters given the field data is fit at the three scales of
interest (grid cells of 9 km2, 81 km2, and 324 km2) for
various combinations of predictors selected a priori.
Thus, our models contain various combinations of
demographic (Demo), environmental (Env), spatially
structured (Space), and unstructured (Het) variation.
The spatial structure induced by the ICAR model is
dependent on the underlying grid (Best et al. 2000), and
the three grid scales are not functionally related; thus it
is not possible to directly scale up or down between the
different models (Best et al. 1999, Hjort 1999). However,
for the current analysis this is not a concern since our
interest lies in comparing the fit of the models across the
three scales and not on determining how the spatial
structure itself changes with scale.
All models were fit using WinBUGS software

(Speigelhalter et al. 2002b). The MCMC procedure for
these models was run for 50 000 iterations after a burn-in
period of 500 000 iterations to ensure convergence of all
model parameters.

Model comparisons

We use a deviance information criteria (DIC), a
generalization of the Akaike Information Criteria
(AIC), to compare the set of candidate models
(Spiegelhalter et al. 2002a). These criteria are based on
the deviance, D(h) ¼&2lnL, where L is the likelihood
and h is the vector of model parameters, and a penalty
for model complexity. For AIC, the penalty is two times
the number of parameters in the model. The complexity
of a hierarchical model is measured by the effective
number of parameters, pD, which can be smaller than
the total number of parameters. This complexity is
defined as pD ¼ DðhÞ & DðhÞ, where DðhÞis the expected
deviance over the posterior distribution of parameter
vector h taken across all MCMC samples, and DðhÞ is
the deviance evaluated at the posterior mean of the
parameter vector. Finally, DIC ¼ DðhÞ þ pD ¼ 2DðhÞ &
DðhÞ. Smaller values of DIC indicate a better-fitting
model. As with other penalized likelihood criteria, DIC
is a method for comparing a collection of alternative
models (Carlin and Louis 2000).
Burnham and Anderson (2002) derived Akaike

weights that, when normalized, can be interpreted as a
set of weights that sum to one and estimate the
probability that model r is the best Kullback-Leibler
model for the data at hand, given the set of models
considered. This approach provides a method for
assessing model selection uncertainty. An analogous
approach based on DIC has been suggested to assess
model selection uncertainty within a Bayesian modeling
context (Spiegelhalter et al. 2002a). We used DIC
weights (wDIC) to estimate model selection uncertainty
for each model r in the candidate set, calculated using
the following formula for Akaike weights:
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wDIC ¼
expð& 1

2DDICÞX
expð& 1

2
DDICÞ

ð5Þ

where DDIC was the difference between the minimum
DIC value in the candidate set and model r, and the
denominator was the sum over all models in the set
under consideration. The DIC weights are an informal
measure and allow easier comparison between models
than the DIC value itself.

RESULTS

Our analyses revealed strong support for local
influences on observed spatial patterns of CWD
prevalence in mule deer. For clarity, only results for
the top 10 out of 22 models fit are shown in Table 1.
Based on the wDIC shown in Table 1, the individual
home range scale of 9 km2 is the only one that merits
consideration as the process scale corresponding to the
spatial structure of the CWD data. The combined
weights for Models 1–4 (Table 1), wDIC¼ 0.99, indicated
nearly exclusive support for models at the individual-
home range scale. Within this set, all four models
contained a spatial random effect for estimating the
probability of CWD infection.

Table 2 shows the posterior means, standard devia-
tions, and 95% credible intervals (CI), all on the logit
scale, for the univariate parameters from Models 1 and
2. The individual-level effects of SEX and AGE show
that infection probability is higher in males (odds ratio¼
2.05¼ exp(0.72), 95% CI ¼ 1.60, 2.64) and in animals at
least 2 yr old (odds ratio ¼ 3.46 ¼ exp(1.24), 95% CI ¼
2.20, 5.63) after adjusting for the effects due to the
environmental variables. These results are in agreement
with earlier studies (Miller et al. 2000, Wolfe et al. 2002,
Miller and Conner 2005). Estimates of environmental
covariate effects from Model 2 show that %PRIV (odds
ratio¼ 2.45, 95% CI¼ 1.25, 4.77) and %HAB (odds ratio
¼ 2.21, 95% CI ¼ 1.04, 4.54) significantly influenced
infection probability; however, these credible intervals
appear relatively wide, reflecting a high degree of
uncertainty in the estimates.

Lambda (k), which is the ratio of spatial variability to
total random effect variation was 0.66 with a 95%
credible interval ranging from 0.57 to 0.74 for Model 2.
Thus, across the landscape, the spatial random effect
accounted for between 57% and 74% of the variability
attributed to the random effects in that model. This
observation, along with the fact that the best model did
not contain an unstructured heterogeneity random
effect, strengthens the argument that the contact process
resulting in landscape-scaled disease heterogeneity is
local in nature, influenced more by small-scale spatial
structure than by overall unstructured heterogeneity.
These results make sense considering that across our
entire study area CWD prevalence was ;9% for all deer
sampled, making overall infection probabilities rela-
tively low. However, within a single 9-km2 aerial unit,
prevalence rates were estimated as high as 35%,
emphasizing that locally dependent processes scale with
the spatial distribution CWD infection.

The weight of evidence for Model 1, the top model
that contained only demographic covariates and spa-
tially structured heterogeneity, was relatively high at

TABLE 1. Model selection results to identify the candidate models best explaining observed spatial patterns of chronic wasting
disease (CWD) prevalence in mule deer in north-central Colorado, USA.

Model number Scale (km2) Model pD DIC wDIC

1 9 Demo þ Space 71.1 2182.76 0.694
2 9 Demo þ Env þ Space þ Het 80.7 2186.28 0.119
3 9 Demo þ Env þ Space 50.2 2186.73 0.095
4 9 Demo þ Space þ Het 95.5 2187.04 0.082
5 81 Demo þ Env þ Space 22.4 2192.42 0.006
6 9 Demo þ Env þ Het 65.0 2195.10 0.001
7 81 Demo þ Env þ Het 30.5 2195.39 0.001
8 81 Demo þ Env þ Space þ Het 34.6 2195.67 0.001
9 81 Demo þ Env 6.0 2197.57 0.000
10 81 Demo þ Space þ Het 78.7 2244.20 0.000

Notes: We examined three analysis scales (grid cells of 9 km2, 81 km2, and 324 km2), using models that incorporated various
combinations of demographic (Demo), environmental (Env), spatial (Space), and unstructured heterogeneous (Het) variation.
Demo ¼ AGE þ SEX; Env ¼ %HAB þ %PRIV þ DISP (see Methods for details); Space is the spatial random effect; Het is the
unstructured variation in the model; pD is the effective number of parameters; DIC is deviance information criteria; wDIC

informally quantifies model selection uncertainty.

TABLE 2. Univariate parameter estimates from Model 1 and
Model 2.

Variable
Model
rank Mean SD 2.5% CI 97.5% CI

SEX 1 0.72 0.13 0.47 0.97
AGE 1 1.24 0.24 0.79 1.73
%PRIV 2 0.89 0.33 0.22 1.57
%HAB 2 0.79 0.39 0.04 1.51
DISP 2 0.03 0.07 &0.13 0.19

Note: Estimates for individual-level covariates SEX and
AGE are from Model 1, the top deviance information criteria
(DIC) model (which did not contain environmental covariates),
with environmental covariate effects from Model 2, the best
model containing these effects. CI, credible intervals.
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0.69. Examination of pD provides insight into the

contribution to model fit made by the two random

effect components (Table 1). Recall that Model 2
contained the effects of Model 1 plus the three environ-

mental covariates and unstructured heterogeneity ef-
fects. Thus Model 2 has 543 more parameters than

Model 1. However, pD increased by only 6. This
information, combined with a wDIC of approximately

0.12 for Model 2, suggests that the nonspatial random
effects contributed little to the fit of Model 2 and that

including these effects, along with the environmental
covariates, resulted in a poorer fit to the CWD data than

the reduced Model 1.

A visual comparison (Figs. 2 and 3) of the top model
containing only demographic covariates and spatial

structure (Model 1 in Table 1) with this same model but

with the addition of the environmental covariates

(Model 3 in Table 1) shows that Model 1 had a

concentrated distribution of posterior spatial random

effects across the landscape, while Model 3 had a more

diffuse distribution and a lower overall intensity for the

spatial random effects. It is not surprising that including

environmental covariates in the model has diminished

the strength of the local spatial process. This effect can

be demonstrated quantitatively by examining the differ-

ence in the number of effective parameters, pD, between

Models 1 and 3, the top models with and without this

effect (Table 1). Adding the three environmental

covariates to the top model, each contributing a single

parameter, reduces pD by more than 20 in the resulting

third best model. This reduction in pD with the addition

of three parameters occurred because the environmental

FIG. 2. Posterior estimates of mean spatial random effects for Model 1, the best approximating model of the probability that an
individual deer was infected with chronic wasting disease (CWD). The model was fit at a 9-km2 analysis scale and used the
demographic (Demo) and spatial random effects (Space), resulting in a concentrated distribution of infection probabilities.
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covariates ‘‘shrunk’’ the variability in the spatial random
effect toward an overall mean effect, thereby reducing
the effective number of parameters necessary for
modeling the spatial variation in CWD infection
probability. Thus, the environmental covariates appear
to have compensated for a portion of the residual spatial
variation observed when the covariates were absent. To
illustrate this, Model 3, which included the landscape
covariates, had posterior spatial random effects with
95% credible intervals that overlapped zero for all grid
cells, while Model 1 without environmental covariates
had spatial random effects that were significantly
different from zero for 11% of the grid cells. Still, the
environmental covariates produced a poorer fitting
model that was less consistent with the observed spatial
distribution of CWD, as measured by DIC.

DISCUSSION

An important first step toward understanding host–
pathogen dynamics in spatially structured populations is
to understand the scales over which population pro-
cesses and landscape features shape the host–pathogen
relationship. The dynamics of CWD transmission in
mule deer are potentially structured by interactions that
occur across a range of nested spatial scales in a
heterogeneous environment (Miller et al. 2000). Un-
fortunately, little empirical data exist for relating trans-
mission dynamics, and the resulting spatial distribution
of CWD infection, to the scales of seasonal movements
that likely help shape observed prevalence patterns.
Previous research on the ecology of CWD in mule deer
populations identified plausible natural transmission

FIG. 3. Posterior estimates of mean spatial random effects for Model 3 of the probability that an individual deer was infected
with chronic wasting disease (CWD). The model was fit at a 9-km2 analysis scale and used the demographic (Demo) and
environmental (Env) covariates and spatial (Space) random effects, resulting in a more diffuse distribution of infection probabilities
than in Model 1.
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mechanisms (Miller et al. 2004), as well as apparent
influences of demography (Miller and Conner 2005),
seasonal movement patterns (Conner and Miller 2004),
and land use (Farnsworth et al. 2005) on spatial
epidemiology; however, quantitative analyses compar-
ing potential movement scales structuring the spatial
distribution of CWD have not been addressed until now.
Our results provide evidence that the spatial structure

of CWD results from small-scale, local-contact pro-
cesses, which likely occur primarily during the winter
season when subpopulation home ranges are reduced in
size and the potential for infectious contacts among
sympatric individuals is possibly increased (Miller and
Williams 2003, Conner and Miller 2004, Miller et al.
2004, Miller and Conner 2005). The key to arriving at
this conclusion was the use of information about the
scales over which the structuring process of movement
occurs. Because we specified analysis scales to corre-
spond to the crucial epidemiological process of seasonal
movements, we were able to better understand which
type of movement pattern (wintering individual, winter
subpopulation, or summer subpopulation) appears to be
the most plausible process scale underlying observed
spatial patterns of CWD prevalence. This result, in turn,
provides critical information for further process-based
investigations. Our work demonstrates how hypotheses
regarding potential generating processes can be eval-
uated in the face of sparse empirical data. Enumerating
the relative contributions from each of these process
scales was made possible by the hierarchical modeling
framework.
There are biological explanations for the effects of

covariates that emerged as important influences on
CWD infection probability. Because the clinical course
of CWD is protracted, lasting about two years on
average (Williams and Miller 2002), we expected an
effect of age such that animals older than two years were
more likely to test positive for CWD (Miller et al. 2000,
Miller and Conner 2005); this highly significant effect is
reflected by the models. Private land ownership and
developed areas of the landscape often restrict hunter
access to deer populations and may encourage their use
as refugia (Farnsworth et al. 2005); this restriction
possibly leads to populations with larger numbers of
males and an older age distribution, both of which are
associated with an elevated probability of infection
(Miller and Conner 2005). Also, because CWD trans-
mission can occur via exposure to infected animals or
environments contaminated by excreta and carcasses
from infected animals (Miller et al. 2004), changes in
deer distribution or movements affected by land own-
ership patterns and human alteration of deer habitats
could possibly lead to higher local prevalence in these
areas (Wolfe et al. 2002, Farnsworth et al. 2005). The sex
effect, per se, is more difficult to explain, but could be
due to the polygamous mating structure of deer
populations combined with effects of predominantly
male hunting (Miller and Conner 2005). In this

situation, a sex ratio skewed toward females coupled
with the polygamous mating system in which individual
males contact groups of females may act to increase the
contact rate of males relative to females, thereby
increasing their probability of infection.
Our research differs fundamentally from previous

pattern-based analyses used in the few wildlife land-
scape epidemiological investigations that have been
undertaken to date. Unlike other studies, we incorpo-
rated both host endogenous correlates (sex and age) of
the disease and exogenous features of the environment
thought a priori to be important predictors of CWD
spatial heterogeneity. More importantly, by formulating
our approach in terms of a hierarchical model we were
able to simultaneously consider the contributions made
by these covariates as well as from local spatial
structure and overall landscape heterogeneity to the
risk of disease occurrence at each of the three movement
scales.
Unlike earlier landscape epidemiological investiga-

tions in natural systems, we show how an exploration of
disease patterns across multiple, process-based, spatial
scales can lead to important epidemiological inference
regarding plausible biological scales and mechanisms of
disease spread. This provides a spatial perspective for
further research into the etiology of disease. To fully
understand the relationship between host, pathogen, and
environment requires in-depth knowledge about host
population dynamics and movement patterns, disease
etiology, interactions between host and pathogen, and
the effects of environmental variation on host and
pathogen distributions and dynamics. Achieving this
level of understanding requires process-based, biological
investigations, informed by statistical analyses that
identify relevant scales and correlations among the
system’s components.
The hierarchical method we have demonstrated

provides a powerful approach for a difficult problem
in ecology: linking spatial patterns to the scales over
which generating processes operate. By maintaining a
constant data structure at the lowest (e.g., individual)
level in the hierarchy, while varying the scale of the
spatial process component of the model, a hierarchical
approach allows for direct comparisons of the effect of
various process scales on the spatial structure of host–
pathogen relationships. In contrast, classical approaches
to multi-scaled spatial analysis can suffer from what is
known as ecological fallacy, a situation in which
inference at one level is based on data collected at a
different level (Schwartz 1994, Diez-Roux 1998, Wake-
field 2003). Ecological fallacy frequently occurs when
the data structure is altered to accommodate multiple
scales of analysis, obviating any direct comparison of
how different process scales are related to the spatial
structure of disease.
Our approach is applicable to many ecological

questions for which georeferenced data are available,
for example, presence/absence data or counts of
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individuals that can be tied to specific locations on the
landscape. Further, although our data were in the form
of discrete individuals, the hierarchical model structure
extends to continuous spatial processes, such as the
distribution of nutrients in soils or hydrologic systems,
although this extension can introduce additional ana-
lytical and computational complexity (Banerjee et al.
2004). Thus, the generality of this approach is applicable
across a wide range of ecological questions framed
within a spatial context.
Within the Bayesian paradigm there are numerous

possible ways to examine the hierarchical model results,
and these estimates are accompanied by standard errors
that provide for a complete assessment of model
uncertainty. For example, in addition to the results
considered here, we can construct maps of the mean and
standard deviation of cell-level prevalence over the
landscape to obtain an aerial estimate of disease
prevalence. We can also compare the posterior distri-
bution of disease prevalence over a larger region such as
the management units that are used in developing
strategies for managing the disease. With additional
analysis, we can also compare the spatial cumulative
distribution function (Lahiri et al. 1999, Banerjee et al.
2004) for prevalence for two or more regions to
determine which areas have the greatest concentration
of CWD-infected deer.
Determining the processes that give rise to patterns in

nature is difficult in any ecological system. This problem
is particularly challenging when we seek to understand
processes that act over large geographical or temporal
scales. In such cases, data are often limited, and several
plausible mechanisms can be identified as potential
causes for observed patterns; consequently, it is not
always clear how to proceed with testing scientific
hypotheses about generating mechanisms. By casting
hypotheses regarding scale-dependent processes in terms
of models that can be quantitatively compared,
hierarchical analyses provide a powerful tool for
gaining insight in this context, even when data are
limited.
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